Factorization of the Green's operator in the Dirichlet problem for $(-1)^m(d/d t)^{2m}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1662-1688.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we propose a method for solving the Dirichlet boundary value problem $(-1)^{m}{u}^{(2m)}=f$, ${u}^{(k)}(\pm 1)= 0$, $k=0, \dots ,m-1$, which is based on the factorization of the Green's operator, $\mathbf{G}_{2m}=(-1)^m\mathbf{J}^m \, \overset{\infty}{\underset{m}{\mathbf{Proj}}}\, \mathbf{J}^m:L_2({\mathbb I}) \to H^{m}_{0}({\mathbb I}) \cap H^{2m}({\mathbb I}), {\mathbb I}=[-1,1]$. Here $\mathbf{J}^m$ is a Volterra operator of $m$-fold integration аnd $\overset{\infty}{\underset{m}{\mathbf{Proj}}}$ — operator of orthogonal projection in $L_2({\mathbb I})$. The polynomials $\widetilde{\mathbb P}^{[2m]}_{2m+N} =\mathbf{J}^{m}\overset{\infty}{\underset{m} { \mathbf{Proj}}}\, {\mathbb P}^{[m]}_{m+N}$ form the basis of the Sobolev space $H^{m}_{0}({\mathbb I}) \cap H^{2m}({\mathbb I})$, where ${\mathbb P}^{[m]}_{m+N}(t)= \mathbf{J}^{m}P_N(t) = \dfrac{(t-1)^m}{m!C^m_{m+N}} P^{(m,-m)}_{N}(t)$, $P_N$ are Legendre polynomials and ${P}^{(m,-m)}_{N}$ — non–classical Jacobi polynomials. The study of polynomials ${\mathbb P}^ {[m]}_{m+N}$ occupies the most part of this work including the problem of expanding ${\mathbb P}^{[m]}_{m+N}$ in Legendre polynomials. The formula for calculating the connection coefficients is obtained.
Keywords: ordinary differential equation, Dirichlet boundary value problem, Green's operator, Sobolev space, Riemann–Liouville fractional integral, Jacobi and Bessel polynomials, spherical Bessel functions, Gauss hypergeometric functions.
Mots-clés : Fourier transform, Legendre
@article{SEMR_2019_16_a105,
     author = {S. G. Kazantsev},
     title = {Factorization of the {Green's} operator in the {Dirichlet} problem for $(-1)^m(d/d t)^{2m}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1662--1688},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a105/}
}
TY  - JOUR
AU  - S. G. Kazantsev
TI  - Factorization of the Green's operator in the Dirichlet problem for $(-1)^m(d/d t)^{2m}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1662
EP  - 1688
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a105/
LA  - ru
ID  - SEMR_2019_16_a105
ER  - 
%0 Journal Article
%A S. G. Kazantsev
%T Factorization of the Green's operator in the Dirichlet problem for $(-1)^m(d/d t)^{2m}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1662-1688
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a105/
%G ru
%F SEMR_2019_16_a105
S. G. Kazantsev. Factorization of the Green's operator in the Dirichlet problem for $(-1)^m(d/d t)^{2m}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1662-1688. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a105/

[1] L.F. Rakhmatullina, “Der Greensche Operator und die Regularisierung linearer Randwertprobleme”, Differ. Uravn., 15:3 (1979), 425–435 (in Russian) | Zbl

[2] K.M. Das, A.S. Vatsala, “Green's function for $n-n$ boundary value problem and an analogue of Hartman's result”, Journal of Mathematical Analysis and Applications, 51:3 (1975), 670–677 | DOI | MR | Zbl

[3] G.B. Gustafson, “A Green's function convergence principle, with applications to computation and norm estimates”, Rocky Mountain J. Math., 6:3 (1976), 457–492 | DOI | MR | Zbl

[4] L. Kong, J. Wang, “The Green's Function for $(k,n-k)$ Conjugate Boundary Value Problems and Its Applications”, Journal of Mathematical Analysis and Applications, 255 (2001), 404–422 | DOI | MR | Zbl

[5] A. Bottcher, “The Constants in the Asymptotic Formulas by Rambour and Seghier for Inverses of Toeplitz Matrices”, Integral Equations and Operator Theory, 50:1 (2004), 43–55 | DOI | MR | Zbl

[6] K. Watanabe, Y. Kametaka, H. Yamagishi, A. Nagai, K. Takemura, “The best constant of Sobolev inequality corresponding to clamped boundary value problem”, Boundary Value Problems, 2011 (2011), 875057 | DOI | MR | Zbl

[7] F. Natterer, The Mathematics of Computerized Tomography, John Wiley Sons, Chichester, 1986 | MR | Zbl

[8] V.I. Smirnov, Kurs vysshej matematiki, part 2, v. 4, 1981

[9] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, Dover, New York, 1972 | MR

[10] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: theory and applications, Gordon and Breach, Amsterdam, 1993 | MR | Zbl

[11] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010 | MR | Zbl

[12] G. Szego, Orthogonal Polynomials, Colloquium publ., XXIII, American Math. Society, Providence, Rhode Island, 1939 | DOI | MR

[13] S.G. Mihlin, Higher-dimensional singular integrals and integral equations, Fizmatgiz, M., 1962 | MR

[14] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl

[15] H. Bateman, Higher Transcendental Functions, v. I, McGraw-Hill, New York, 1953 | MR | Zbl

[16] H. Bateman, Higher Transcendental Functions, v. II, McGraw-Hill, New York, 1953 | MR

[17] A.M. Mathai, H.J. Haubold, Special Function for Applied Scientist, Springer, Berlin, 2010

[18] E. Grosswald, Bessel Polynomials, Lecture Notes in Mathematics, 698, Springer-Verlag, New York, 1978 | DOI | MR | Zbl

[19] H.L. Krall, Orrin Frink, “A New Class of Orthogonal Polynomials: The Bessel Polynomials”, Trans. Amer Math. Soc., 65:1 (1949), 100–115 | DOI | MR | Zbl

[20] J. Burchnall, “The Bessel Polynomials”, Canad. J. Math., 3 (1951), 62–68 | DOI | MR | Zbl

[21] A. Nikiforov, V.B. Uvarov, Special Function of Mathematical Physics, Birkhäuser-Verlag, Basel, 1988 | MR

[22] E. D. Rainville, Special Functions, Chelsea Publishing Co, Bronx, New York, 1971 | MR | Zbl

[23] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series, v. 2, Gordon Breach Science Publishers, New York, 1986 | MR | Zbl

[24] Academic Press, New York–London, 1994 | MR