Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a105, author = {S. G. Kazantsev}, title = {Factorization of the {Green's} operator in the {Dirichlet} problem for $(-1)^m(d/d t)^{2m}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1662--1688}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a105/} }
TY - JOUR AU - S. G. Kazantsev TI - Factorization of the Green's operator in the Dirichlet problem for $(-1)^m(d/d t)^{2m}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1662 EP - 1688 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a105/ LA - ru ID - SEMR_2019_16_a105 ER -
S. G. Kazantsev. Factorization of the Green's operator in the Dirichlet problem for $(-1)^m(d/d t)^{2m}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1662-1688. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a105/
[1] L.F. Rakhmatullina, “Der Greensche Operator und die Regularisierung linearer Randwertprobleme”, Differ. Uravn., 15:3 (1979), 425–435 (in Russian) | Zbl
[2] K.M. Das, A.S. Vatsala, “Green's function for $n-n$ boundary value problem and an analogue of Hartman's result”, Journal of Mathematical Analysis and Applications, 51:3 (1975), 670–677 | DOI | MR | Zbl
[3] G.B. Gustafson, “A Green's function convergence principle, with applications to computation and norm estimates”, Rocky Mountain J. Math., 6:3 (1976), 457–492 | DOI | MR | Zbl
[4] L. Kong, J. Wang, “The Green's Function for $(k,n-k)$ Conjugate Boundary Value Problems and Its Applications”, Journal of Mathematical Analysis and Applications, 255 (2001), 404–422 | DOI | MR | Zbl
[5] A. Bottcher, “The Constants in the Asymptotic Formulas by Rambour and Seghier for Inverses of Toeplitz Matrices”, Integral Equations and Operator Theory, 50:1 (2004), 43–55 | DOI | MR | Zbl
[6] K. Watanabe, Y. Kametaka, H. Yamagishi, A. Nagai, K. Takemura, “The best constant of Sobolev inequality corresponding to clamped boundary value problem”, Boundary Value Problems, 2011 (2011), 875057 | DOI | MR | Zbl
[7] F. Natterer, The Mathematics of Computerized Tomography, John Wiley Sons, Chichester, 1986 | MR | Zbl
[8] V.I. Smirnov, Kurs vysshej matematiki, part 2, v. 4, 1981
[9] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, Dover, New York, 1972 | MR
[10] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: theory and applications, Gordon and Breach, Amsterdam, 1993 | MR | Zbl
[11] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010 | MR | Zbl
[12] G. Szego, Orthogonal Polynomials, Colloquium publ., XXIII, American Math. Society, Providence, Rhode Island, 1939 | DOI | MR
[13] S.G. Mihlin, Higher-dimensional singular integrals and integral equations, Fizmatgiz, M., 1962 | MR
[14] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl
[15] H. Bateman, Higher Transcendental Functions, v. I, McGraw-Hill, New York, 1953 | MR | Zbl
[16] H. Bateman, Higher Transcendental Functions, v. II, McGraw-Hill, New York, 1953 | MR
[17] A.M. Mathai, H.J. Haubold, Special Function for Applied Scientist, Springer, Berlin, 2010
[18] E. Grosswald, Bessel Polynomials, Lecture Notes in Mathematics, 698, Springer-Verlag, New York, 1978 | DOI | MR | Zbl
[19] H.L. Krall, Orrin Frink, “A New Class of Orthogonal Polynomials: The Bessel Polynomials”, Trans. Amer Math. Soc., 65:1 (1949), 100–115 | DOI | MR | Zbl
[20] J. Burchnall, “The Bessel Polynomials”, Canad. J. Math., 3 (1951), 62–68 | DOI | MR | Zbl
[21] A. Nikiforov, V.B. Uvarov, Special Function of Mathematical Physics, Birkhäuser-Verlag, Basel, 1988 | MR
[22] E. D. Rainville, Special Functions, Chelsea Publishing Co, Bronx, New York, 1971 | MR | Zbl
[23] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series, v. 2, Gordon Breach Science Publishers, New York, 1986 | MR | Zbl
[24] Academic Press, New York–London, 1994 | MR