New boundary value problems for fourth-order quasi-hyperbolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1410-1436.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the correctness in the spaces of S.L. Sobolev of new boundary value problems for quasi-hyperbolic differential equations $$u_{tttt}+Au=f(x,t)$$ ($A$ is an elliptic operator acting on spatial variables). For the proposed tasks theorems on the existence and uniqueness of solutions are proved, and examples of non-uniqueness are given.
Keywords: fourth-order quasi-hyperbolic equations, regular solutions, uniqueness.
Mots-clés : existence
@article{SEMR_2019_16_a100,
     author = {A. I. Kozhanov and B. Koshanov and J. Sultangazieva},
     title = {New boundary value problems for fourth-order quasi-hyperbolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1410--1436},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a100/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - B. Koshanov
AU  - J. Sultangazieva
TI  - New boundary value problems for fourth-order quasi-hyperbolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1410
EP  - 1436
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a100/
LA  - ru
ID  - SEMR_2019_16_a100
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A B. Koshanov
%A J. Sultangazieva
%T New boundary value problems for fourth-order quasi-hyperbolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1410-1436
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a100/
%G ru
%F SEMR_2019_16_a100
A. I. Kozhanov; B. Koshanov; J. Sultangazieva. New boundary value problems for fourth-order quasi-hyperbolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1410-1436. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a100/

[1] A.I. Kozhanov, N.R. Pinigina, “Boundary Value Problems for Certain Classes of Higher–Order Composite Type Equations”, Siberian Electronic Mathematical Reports, 12 (2015), 842–853 | MR | Zbl

[2] V.N. Vragov, “K Teorii Kraevyh Zadach dlya Uravneniy Smeshannogo Tipa v Prostranstve”, Diffentsyal. Uravn., 13:6 (1977), 1098–1105 | Zbl

[3] V.N. Vragov, “O Postanovke i Razreshimosti Kraevyh Zadach dlya Uravneniy Smeshanno-Sostavnogo Typa”, Matematicheskiy Analiz i Smezhnye Voprosy Matematiki, Nauka, Novosibirsk, 1978, 5–13

[4] I.E. Egorov, V.E. Fedorov, Neklassicheskie Uravneniya Matematicheskoy Fiziki Vysokogo Poryadka, Vychisl. Tsentr SO RAN, Novosibirsk, 1995

[5] A.I. Kozhanov, N.R. Pinigina, “Boundary Value Problems for some Higher–Order Nonclassical Differential Equations”, Math. Notes, 101:3 (2017), 467–474 | MR | Zbl

[6] S.S. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Translations of Mathematical Monographs, 90, American Mathematical Soc., Providence, RI, 1991 | MR | Zbl

[7] O.A. Ladyzhenskaia, N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York–London, 1968 | MR | Zbl

[8] J.L. Lions, Some Methods of Solving Nonlinear Boundary Value Problems, Mir, M., 1973

[9] L.C. Evans, Partial Differential Equations, American Mathematical Soc., Providence, Rhode Island, 2003

[10] A.G. Sveshnikov, A.I. Bogolyubov, V.V. Kravtsov, Lektsyi po Matematicheskoy Fizike, MGU, M.; Nauka, 2004