New boundary value problems for fourth-order quasi-hyperbolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1410-1436

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the correctness in the spaces of S.L. Sobolev of new boundary value problems for quasi-hyperbolic differential equations $$u_{tttt}+Au=f(x,t)$$ ($A$ is an elliptic operator acting on spatial variables). For the proposed tasks theorems on the existence and uniqueness of solutions are proved, and examples of non-uniqueness are given.
Keywords: fourth-order quasi-hyperbolic equations, regular solutions, uniqueness.
Mots-clés : existence
@article{SEMR_2019_16_a100,
     author = {A. I. Kozhanov and B. Koshanov and J. Sultangazieva},
     title = {New boundary value problems for fourth-order quasi-hyperbolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1410--1436},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a100/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - B. Koshanov
AU  - J. Sultangazieva
TI  - New boundary value problems for fourth-order quasi-hyperbolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1410
EP  - 1436
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a100/
LA  - ru
ID  - SEMR_2019_16_a100
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A B. Koshanov
%A J. Sultangazieva
%T New boundary value problems for fourth-order quasi-hyperbolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1410-1436
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a100/
%G ru
%F SEMR_2019_16_a100
A. I. Kozhanov; B. Koshanov; J. Sultangazieva. New boundary value problems for fourth-order quasi-hyperbolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1410-1436. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a100/