Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 648-672 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Considered one of generalizations of association schemes, with variability of intersection numbers is allowed. Generalization of scheme is considered on set of elements of prime order $p$ of group $SL_2(q)$ where $q$ is a degree of $p$. Intersection numbers of this scheme are calculated and intersection arrays of it's graphs are found.
Mots-clés : association scheme, group
Keywords: intersection numbers, distance-regular graph.
@article{SEMR_2019_16_a10,
     author = {I. T. Mukhametyanov},
     title = {Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {648--672},
     year = {2019},
     volume = {16},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/}
}
TY  - JOUR
AU  - I. T. Mukhametyanov
TI  - Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 648
EP  - 672
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/
LA  - ru
ID  - SEMR_2019_16_a10
ER  - 
%0 Journal Article
%A I. T. Mukhametyanov
%T Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 648-672
%V 16
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/
%G ru
%F SEMR_2019_16_a10
I. T. Mukhametyanov. Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 648-672. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/

[1] I.T. Mukhametianov, “Graphs on conjugate involutions class of group $L_2(2^m)$”, Nauchnoe obozrenie, 5 (2013), 133–141

[2] I.T. Mukhametianov, “About distance-regular graphs on set of non-unit $p$-lements of group $L_2(p^m)$”, Trudy Inst. Mat. Mekh. UrO RAN, 18, no. 3, 2012, 164–178

[3] I.T. Mukhametianov, “Graphs on conjugate $p$-elements class of group $L_2(p^m)$”, Nauchnoe obozrenie, 9 (2013), 105–113

[4] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[5] V.A. Belonogov, “About small interactions in finite groups”, Trudy Inst. Mat. Mekh. UrO RAN, 2, 1992, 3–18 | MR | Zbl

[6] L. Dornhoff,, Group representation theory, Marcel Dekker, Pt. A.N.Y., 1971 | MR | Zbl

[7] S.V. Goryainov, “On isomorphism between distance-regular graphs”, Siberian Electronic Mathematical Reports, 11 (2014), 311–320 | MR | Zbl

[8] Eiichi Bannai, Tatsuro Ito, Algebraic Combinatorics I: Association Schemes, Translated from English, Mir, 1987 | MR | Zbl