Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 648-672.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considered one of generalizations of association schemes, with variability of intersection numbers is allowed. Generalization of scheme is considered on set of elements of prime order $p$ of group $SL_2(q)$ where $q$ is a degree of $p$. Intersection numbers of this scheme are calculated and intersection arrays of it's graphs are found.
Mots-clés : association scheme, group
Keywords: intersection numbers, distance-regular graph.
@article{SEMR_2019_16_a10,
     author = {I. T. Mukhametyanov},
     title = {Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {648--672},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/}
}
TY  - JOUR
AU  - I. T. Mukhametyanov
TI  - Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 648
EP  - 672
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/
LA  - ru
ID  - SEMR_2019_16_a10
ER  - 
%0 Journal Article
%A I. T. Mukhametyanov
%T Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 648-672
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/
%G ru
%F SEMR_2019_16_a10
I. T. Mukhametyanov. Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 648-672. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/

[1] I.T. Mukhametianov, “Graphs on conjugate involutions class of group $L_2(2^m)$”, Nauchnoe obozrenie, 5 (2013), 133–141

[2] I.T. Mukhametianov, “About distance-regular graphs on set of non-unit $p$-lements of group $L_2(p^m)$”, Trudy Inst. Mat. Mekh. UrO RAN, 18, no. 3, 2012, 164–178

[3] I.T. Mukhametianov, “Graphs on conjugate $p$-elements class of group $L_2(p^m)$”, Nauchnoe obozrenie, 9 (2013), 105–113

[4] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[5] V.A. Belonogov, “About small interactions in finite groups”, Trudy Inst. Mat. Mekh. UrO RAN, 2, 1992, 3–18 | MR | Zbl

[6] L. Dornhoff,, Group representation theory, Marcel Dekker, Pt. A.N.Y., 1971 | MR | Zbl

[7] S.V. Goryainov, “On isomorphism between distance-regular graphs”, Siberian Electronic Mathematical Reports, 11 (2014), 311–320 | MR | Zbl

[8] Eiichi Bannai, Tatsuro Ito, Algebraic Combinatorics I: Association Schemes, Translated from English, Mir, 1987 | MR | Zbl