Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a10, author = {I. T. Mukhametyanov}, title = {Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {648--672}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/} }
TY - JOUR AU - I. T. Mukhametyanov TI - Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 648 EP - 672 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/ LA - ru ID - SEMR_2019_16_a10 ER -
I. T. Mukhametyanov. Associations scheme with nonconstant intersection numbers, associated with group $SL_2(q)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 648-672. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a10/
[1] I.T. Mukhametianov, “Graphs on conjugate involutions class of group $L_2(2^m)$”, Nauchnoe obozrenie, 5 (2013), 133–141
[2] I.T. Mukhametianov, “About distance-regular graphs on set of non-unit $p$-lements of group $L_2(p^m)$”, Trudy Inst. Mat. Mekh. UrO RAN, 18, no. 3, 2012, 164–178
[3] I.T. Mukhametianov, “Graphs on conjugate $p$-elements class of group $L_2(p^m)$”, Nauchnoe obozrenie, 9 (2013), 105–113
[4] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[5] V.A. Belonogov, “About small interactions in finite groups”, Trudy Inst. Mat. Mekh. UrO RAN, 2, 1992, 3–18 | MR | Zbl
[6] L. Dornhoff,, Group representation theory, Marcel Dekker, Pt. A.N.Y., 1971 | MR | Zbl
[7] S.V. Goryainov, “On isomorphism between distance-regular graphs”, Siberian Electronic Mathematical Reports, 11 (2014), 311–320 | MR | Zbl
[8] Eiichi Bannai, Tatsuro Ito, Algebraic Combinatorics I: Association Schemes, Translated from English, Mir, 1987 | MR | Zbl