Existence and uniqueness of the solution of the adjoint system in one problem of
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1065-1079

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the problem of optimal control of mathematical model of a non-adiabatic tubular reactor is considered. The proof of existence and uniqueness of the solution of the adjoint system in weight Hölder classes is carried out.
Keywords: mathematical model, chemical reactor, optimal control, functional, necessary condition of an optimality, maximum principle of Pontryagin, the adjoint system.
@article{SEMR_2018_15_a99,
     author = {K. S. Musabekov},
     title = {Existence and uniqueness of the solution of the adjoint system in one problem of},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1065--1079},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/}
}
TY  - JOUR
AU  - K. S. Musabekov
TI  - Existence and uniqueness of the solution of the adjoint system in one problem of
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1065
EP  - 1079
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/
LA  - ru
ID  - SEMR_2018_15_a99
ER  - 
%0 Journal Article
%A K. S. Musabekov
%T Existence and uniqueness of the solution of the adjoint system in one problem of
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1065-1079
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/
%G ru
%F SEMR_2018_15_a99
K. S. Musabekov. Existence and uniqueness of the solution of the adjoint system in one problem of. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1065-1079. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/