Existence and uniqueness of the solution of the adjoint system in one problem of
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1065-1079.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the problem of optimal control of mathematical model of a non-adiabatic tubular reactor is considered. The proof of existence and uniqueness of the solution of the adjoint system in weight Hölder classes is carried out.
Keywords: mathematical model, chemical reactor, optimal control, functional, necessary condition of an optimality, maximum principle of Pontryagin, the adjoint system.
@article{SEMR_2018_15_a99,
     author = {K. S. Musabekov},
     title = {Existence and uniqueness of the solution of the adjoint system in one problem of},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1065--1079},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/}
}
TY  - JOUR
AU  - K. S. Musabekov
TI  - Existence and uniqueness of the solution of the adjoint system in one problem of
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1065
EP  - 1079
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/
LA  - ru
ID  - SEMR_2018_15_a99
ER  - 
%0 Journal Article
%A K. S. Musabekov
%T Existence and uniqueness of the solution of the adjoint system in one problem of
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1065-1079
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/
%G ru
%F SEMR_2018_15_a99
K. S. Musabekov. Existence and uniqueness of the solution of the adjoint system in one problem of. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1065-1079. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/

[1] L.S. Pontryagin, V.G., R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley Sons, New York, 1962 | MR | Zbl

[2] V.A.Solonnikov, “About boundary value Problems and linear parabolic common view differential equations systems”, Proceedings of the Steklov Inst. Math., 83, 1965, 3–162 (In Russian) | MR

[3] V.S. Belonosov, T.I. Zelenyak, Nonlocal problems in the theory of quasilinear parabolic equations, Novosib. Gos. Univ., Novosibirsk, 1975 (In Russian) | MR

[4] V.S. Belonosov, “Decision assessment of parabolic systems in Hölder's weight class in some use”, Mathematical Sb., 110(152):2 (1979), 163–188 (In Russian) | MR | Zbl

[5] C. Georgakis, R. Aris, N.R. Amundson, “Studies in the control of Tubular Reactors”, Chemical Engineering Sience, 32:11 (1977), 1359–1387 | DOI

[6] K.S. Mussabekov, “Existence theorems for the solution in a problem of optimal control of a chemical reactor”, Controllable processes and optimization, Controllable systems, 22, Novosibirsk, 1982, 30–50 (in Russian)

[7] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralcheva, Linear and kvazilinear equations parabolic type, Nauka, M., 1967 (in Russian) | MR

[8] K.S. Musabekov, “Existence of Optimal Control for regularized problem with Phase constraint”, Journal of Mathematical Sciences, 186:3 (2012), 466–477 | DOI | MR

[9] K.S. Musabekov, “Penalty Method for Optimal Control Problem with Phase constraint”, Journal of Mathematical Sciences, 203:4 (2014), 558–569 | DOI | MR

[10] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York, 1955 | MR | Zbl

[11] J. Leray, J. Schauder, “Topologie et equations fonctionnelles”, Ann. Sci l'Ecole Norm. Sup., 51 (1934), 45–78 | DOI | MR