Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a99, author = {K. S. Musabekov}, title = {Existence and uniqueness of the solution of the adjoint system in one problem of}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1065--1079}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/} }
TY - JOUR AU - K. S. Musabekov TI - Existence and uniqueness of the solution of the adjoint system in one problem of JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1065 EP - 1079 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/ LA - ru ID - SEMR_2018_15_a99 ER -
K. S. Musabekov. Existence and uniqueness of the solution of the adjoint system in one problem of. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1065-1079. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a99/
[1] L.S. Pontryagin, V.G., R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley Sons, New York, 1962 | MR | Zbl
[2] V.A.Solonnikov, “About boundary value Problems and linear parabolic common view differential equations systems”, Proceedings of the Steklov Inst. Math., 83, 1965, 3–162 (In Russian) | MR
[3] V.S. Belonosov, T.I. Zelenyak, Nonlocal problems in the theory of quasilinear parabolic equations, Novosib. Gos. Univ., Novosibirsk, 1975 (In Russian) | MR
[4] V.S. Belonosov, “Decision assessment of parabolic systems in Hölder's weight class in some use”, Mathematical Sb., 110(152):2 (1979), 163–188 (In Russian) | MR | Zbl
[5] C. Georgakis, R. Aris, N.R. Amundson, “Studies in the control of Tubular Reactors”, Chemical Engineering Sience, 32:11 (1977), 1359–1387 | DOI
[6] K.S. Mussabekov, “Existence theorems for the solution in a problem of optimal control of a chemical reactor”, Controllable processes and optimization, Controllable systems, 22, Novosibirsk, 1982, 30–50 (in Russian)
[7] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralcheva, Linear and kvazilinear equations parabolic type, Nauka, M., 1967 (in Russian) | MR
[8] K.S. Musabekov, “Existence of Optimal Control for regularized problem with Phase constraint”, Journal of Mathematical Sciences, 186:3 (2012), 466–477 | DOI | MR
[9] K.S. Musabekov, “Penalty Method for Optimal Control Problem with Phase constraint”, Journal of Mathematical Sciences, 203:4 (2014), 558–569 | DOI | MR
[10] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York, 1955 | MR | Zbl
[11] J. Leray, J. Schauder, “Topologie et equations fonctionnelles”, Ann. Sci l'Ecole Norm. Sup., 51 (1934), 45–78 | DOI | MR