Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a98, author = {D. A. Zakora}, title = {Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {971--986}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/} }
TY - JOUR AU - D. A. Zakora TI - Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 971 EP - 986 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/ LA - ru ID - SEMR_2018_15_a98 ER -
%0 Journal Article %A D. A. Zakora %T Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 971-986 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/ %G ru %F SEMR_2018_15_a98
D. A. Zakora. Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 971-986. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/
[1] A.A. Ilushin, B.E. Pobedria, Basic Mathematical Theory of Thermo-Viscoelasticity, Nauka, M., 1970 (Russian) | MR
[2] M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, 12, Philadelphia, 1992 | MR | Zbl
[3] G. Amedola, M. Fabrizio, J.M. Golden, Thermodynamics of Materials with Memory. Theory and Applications, Springer, New York–Dordrecht–Heidelberg–London, 2012 | MR
[4] Z. Liu, S. Zheng, Semigroups Associated with Dissipative Systems, Research Notes in Mathematics Series, 398, CHAPMAN HALL/CRC, Boca Raton–London–New York–Washington, 1999 | MR | Zbl
[5] V.V. Vlasov, N.A. Rautian, Spectral Analysis of Functional Differential Equations, MAKS Press, M., 2016 (Russian)
[6] C.M. Dafermos, “Asymptotic stability in viscoelasticity”, Arch. Rational Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl
[7] C.M. Dafermos, “On abstract Volterra equations with applications to linear viscoelasticity”, J. Differential Equations, 7 (1970), 554–569 | DOI | MR | Zbl
[8] W.A. Day, “The decay of the energy in a viscoelastic body”, Mathematika, 27:2 (1980), 268–286 | DOI | MR | Zbl
[9] M. Fabrizio, B. Lazzari, “On the existence and the asyptotic stability of solutions for linearly viscoelastic solids”, Arch. Rational Mech. Anal., 116:2 (1991), 139–152 | DOI | MR | Zbl
[10] J.E. Mu{ñ}oz{\;}Rivera, “Asymptotic behaviour in linear viscoelasticity”, Quarterly Appl. Math., 52:4 (1994), 629–648 | MR | Zbl
[11] F. Alabau-Boussouria, J. Pr{ü}ss, R. Zacher, “Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels”, C. R. Acad. Sci. Paris, Ser. I, 347:5–6 (2009), 277–282 | DOI | MR
[12] Z. Liu, S. Zheng, “On the exponential stability of linear viscoelasticity and thermoviscoelasticity”, Quarterly Appl. Math., 54:1 (1996), 21–31 | DOI | MR | Zbl
[13] B.W. Liu, “The exponential stabilization of the higher-dimensional linear system of thermoviscoelasticity”, J. Math. Pures Appl., 77:4 (1998), 355–386 | DOI | MR | Zbl
[14] M. Fabrizio, B. Lazzari, J.E. Mu{ñ}oz{\;}Rivera, “Asymptotic behaviour of a thermoelastic plate of weakly hyperbolic type”, Differential and Integral Equations, 13:10–12 (2000), 1347–1370 | MR | Zbl
[15] W. Desch, R.K. Miller, “Exponential stabilization of Volterra integrodifferential equations in Hilbert space”, Journal of Differential Equations, 70 (1987), 366–389 | DOI | MR | Zbl
[16] W. Desch, R.K. Miller, “Exponential stabilization of Volterra integral equations with singular kernels”, Journal of Integral Equations and Applications, 1:3 (1988), 397–433 | DOI | MR | Zbl
[17] F. Ammar-Khodja, A. Benabdallah, J.E. Mu{ñ}oz{\;}Rivera, R. Racke, “Energy decay for Timoshenko systems of memory type”, Journal of Differential Equations, 194:1 (2003), 82–115 | DOI | MR | Zbl
[18] J.E. Mu{ñ}oz{\;}Rivera, H.D. Fernández Sare, “Stability of Timoshenko systems with past history”, J. Math. Anal. Appl., 339:1 (2008), 482–502 | DOI | MR | Zbl
[19] Z. Ma, L. Zhang, X. Yang, “Exponential stability for a Timoshenko-type system with history”, J. Math. Anal. Appl., 380:1 (2011), 299–312 | DOI | MR | Zbl
[20] S.A. Messaoudi, T.A. Apalara, “General stability result in a memory-type porous thermoelasticity system of type III”, Arab J. Math. Sci., 20:2 (2014), 213–232 | MR | Zbl
[21] J.A.D. Appleby, M. Fabrizio, B. Lazzari, D.W. Reynolds, “On exponential asymptotic stability in linear viscoelasticity”, Mathematical Models and Methods in Applied Sciences, 16:10 (2006), 1677–1694 | DOI | MR | Zbl
[22] J.E. Mu{ñ}oz{\;}Rivera, M.G. Naso, “On the dacay of the energy for systems with memory and indefinite dissipation”, Asymptotic Analysis, 49:3–4 (2006), 189–204 | MR | Zbl
[23] V. Pata, “Exponential stability in linear viscoelasticity”, Quarterly Appl. Math., 64:3 (2006), 499–513 | DOI | MR | Zbl
[24] J.E. Mu{ñ}oz{\;}Rivera, M.G. Naso, “Asymptotic stability of semigroups associated with linear weak dissipative systems with memory”, J. Math. Anal. Appl., 326 (2007), 691–707 | DOI | MR | Zbl
[25] F. Alabau-Boussouria, P. Cannarsa, D. Sforza, “Decay estimates for second order evolution equations with memory”, Journal of Functional Analysis, 254 (2008), 1342–1372 | DOI | MR
[26] F. Alabau-Boussouria, P. Cannarsa, “A general method for proving sharp energy decay rates for memory-dissipative evolution equations”, C. R. Acad. Sci. Paris, Ser. I. Partial Differential Equations/Optimal Control, 347:15–16 (2009), 867–872 | DOI | MR
[27] P. Cannarsa, D. Sforza, “Integro-differential equations of hyperbolic type with positive definite kernels”, J. Differential Equations, 250 (2011), 4289–4335 | DOI | MR | Zbl
[28] D.A. Zakora, “Exponential stability of a special semigroup and applications”, Mathematical Notes, 103:5 (2018), 702–719 | MR | Zbl
[29] S.G. Krein, Linear Differential Equations in Banach Space, Nauka, M., 1967 (Russian) | MR
[30] M.S. Birman, M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Mathematics and its applications (Soviet series), D. Reidel Publishing Company, Dordrecht–Boston–Lancaster–Tokyo, 1987 | MR
[31] K-H. Förster, P. Jonas, H. Langer, Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems, Operator Theory: Advances and Applications, 162, Birkhäuser Verlag, Basel–Boston–Berlin, 2006 | MR | Zbl
[32] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., 194, Springer-Verlag, Berlin–Heildelberg–New York, 2000 | MR | Zbl