Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 971-986

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a system of connected incomplete second-order integro-differential operator equations. The sufficient conditions for exponential stability of this system are given. In the case where the external forces are of special type an asymptotic behavior of solutions to this system is proven.
Keywords: integro-differential equation, exponential stability, asymptotics.
@article{SEMR_2018_15_a98,
     author = {D. A. Zakora},
     title = {Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {971--986},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 971
EP  - 986
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/
LA  - ru
ID  - SEMR_2018_15_a98
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 971-986
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/
%G ru
%F SEMR_2018_15_a98
D. A. Zakora. Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 971-986. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/