Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 971-986.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a system of connected incomplete second-order integro-differential operator equations. The sufficient conditions for exponential stability of this system are given. In the case where the external forces are of special type an asymptotic behavior of solutions to this system is proven.
Keywords: integro-differential equation, exponential stability, asymptotics.
@article{SEMR_2018_15_a98,
     author = {D. A. Zakora},
     title = {Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {971--986},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 971
EP  - 986
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/
LA  - ru
ID  - SEMR_2018_15_a98
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 971-986
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/
%G ru
%F SEMR_2018_15_a98
D. A. Zakora. Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 971-986. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a98/

[1] A.A. Ilushin, B.E. Pobedria, Basic Mathematical Theory of Thermo-Viscoelasticity, Nauka, M., 1970 (Russian) | MR

[2] M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, 12, Philadelphia, 1992 | MR | Zbl

[3] G. Amedola, M. Fabrizio, J.M. Golden, Thermodynamics of Materials with Memory. Theory and Applications, Springer, New York–Dordrecht–Heidelberg–London, 2012 | MR

[4] Z. Liu, S. Zheng, Semigroups Associated with Dissipative Systems, Research Notes in Mathematics Series, 398, CHAPMAN HALL/CRC, Boca Raton–London–New York–Washington, 1999 | MR | Zbl

[5] V.V. Vlasov, N.A. Rautian, Spectral Analysis of Functional Differential Equations, MAKS Press, M., 2016 (Russian)

[6] C.M. Dafermos, “Asymptotic stability in viscoelasticity”, Arch. Rational Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl

[7] C.M. Dafermos, “On abstract Volterra equations with applications to linear viscoelasticity”, J. Differential Equations, 7 (1970), 554–569 | DOI | MR | Zbl

[8] W.A. Day, “The decay of the energy in a viscoelastic body”, Mathematika, 27:2 (1980), 268–286 | DOI | MR | Zbl

[9] M. Fabrizio, B. Lazzari, “On the existence and the asyptotic stability of solutions for linearly viscoelastic solids”, Arch. Rational Mech. Anal., 116:2 (1991), 139–152 | DOI | MR | Zbl

[10] J.E. Mu{ñ}oz{\;}Rivera, “Asymptotic behaviour in linear viscoelasticity”, Quarterly Appl. Math., 52:4 (1994), 629–648 | MR | Zbl

[11] F. Alabau-Boussouria, J. Pr{ü}ss, R. Zacher, “Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels”, C. R. Acad. Sci. Paris, Ser. I, 347:5–6 (2009), 277–282 | DOI | MR

[12] Z. Liu, S. Zheng, “On the exponential stability of linear viscoelasticity and thermoviscoelasticity”, Quarterly Appl. Math., 54:1 (1996), 21–31 | DOI | MR | Zbl

[13] B.W. Liu, “The exponential stabilization of the higher-dimensional linear system of thermoviscoelasticity”, J. Math. Pures Appl., 77:4 (1998), 355–386 | DOI | MR | Zbl

[14] M. Fabrizio, B. Lazzari, J.E. Mu{ñ}oz{\;}Rivera, “Asymptotic behaviour of a thermoelastic plate of weakly hyperbolic type”, Differential and Integral Equations, 13:10–12 (2000), 1347–1370 | MR | Zbl

[15] W. Desch, R.K. Miller, “Exponential stabilization of Volterra integrodifferential equations in Hilbert space”, Journal of Differential Equations, 70 (1987), 366–389 | DOI | MR | Zbl

[16] W. Desch, R.K. Miller, “Exponential stabilization of Volterra integral equations with singular kernels”, Journal of Integral Equations and Applications, 1:3 (1988), 397–433 | DOI | MR | Zbl

[17] F. Ammar-Khodja, A. Benabdallah, J.E. Mu{ñ}oz{\;}Rivera, R. Racke, “Energy decay for Timoshenko systems of memory type”, Journal of Differential Equations, 194:1 (2003), 82–115 | DOI | MR | Zbl

[18] J.E. Mu{ñ}oz{\;}Rivera, H.D. Fernández Sare, “Stability of Timoshenko systems with past history”, J. Math. Anal. Appl., 339:1 (2008), 482–502 | DOI | MR | Zbl

[19] Z. Ma, L. Zhang, X. Yang, “Exponential stability for a Timoshenko-type system with history”, J. Math. Anal. Appl., 380:1 (2011), 299–312 | DOI | MR | Zbl

[20] S.A. Messaoudi, T.A. Apalara, “General stability result in a memory-type porous thermoelasticity system of type III”, Arab J. Math. Sci., 20:2 (2014), 213–232 | MR | Zbl

[21] J.A.D. Appleby, M. Fabrizio, B. Lazzari, D.W. Reynolds, “On exponential asymptotic stability in linear viscoelasticity”, Mathematical Models and Methods in Applied Sciences, 16:10 (2006), 1677–1694 | DOI | MR | Zbl

[22] J.E. Mu{ñ}oz{\;}Rivera, M.G. Naso, “On the dacay of the energy for systems with memory and indefinite dissipation”, Asymptotic Analysis, 49:3–4 (2006), 189–204 | MR | Zbl

[23] V. Pata, “Exponential stability in linear viscoelasticity”, Quarterly Appl. Math., 64:3 (2006), 499–513 | DOI | MR | Zbl

[24] J.E. Mu{ñ}oz{\;}Rivera, M.G. Naso, “Asymptotic stability of semigroups associated with linear weak dissipative systems with memory”, J. Math. Anal. Appl., 326 (2007), 691–707 | DOI | MR | Zbl

[25] F. Alabau-Boussouria, P. Cannarsa, D. Sforza, “Decay estimates for second order evolution equations with memory”, Journal of Functional Analysis, 254 (2008), 1342–1372 | DOI | MR

[26] F. Alabau-Boussouria, P. Cannarsa, “A general method for proving sharp energy decay rates for memory-dissipative evolution equations”, C. R. Acad. Sci. Paris, Ser. I. Partial Differential Equations/Optimal Control, 347:15–16 (2009), 867–872 | DOI | MR

[27] P. Cannarsa, D. Sforza, “Integro-differential equations of hyperbolic type with positive definite kernels”, J. Differential Equations, 250 (2011), 4289–4335 | DOI | MR | Zbl

[28] D.A. Zakora, “Exponential stability of a special semigroup and applications”, Mathematical Notes, 103:5 (2018), 702–719 | MR | Zbl

[29] S.G. Krein, Linear Differential Equations in Banach Space, Nauka, M., 1967 (Russian) | MR

[30] M.S. Birman, M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Mathematics and its applications (Soviet series), D. Reidel Publishing Company, Dordrecht–Boston–Lancaster–Tokyo, 1987 | MR

[31] K-H. Förster, P. Jonas, H. Langer, Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems, Operator Theory: Advances and Applications, 162, Birkhäuser Verlag, Basel–Boston–Berlin, 2006 | MR | Zbl

[32] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Math., 194, Springer-Verlag, Berlin–Heildelberg–New York, 2000 | MR | Zbl