Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a97, author = {E. V. Semenko and T. I. Semenko}, title = {The shock front asymptotics in the linear problem of shock wave}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {950--970}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a97/} }
TY - JOUR AU - E. V. Semenko AU - T. I. Semenko TI - The shock front asymptotics in the linear problem of shock wave JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 950 EP - 970 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a97/ LA - en ID - SEMR_2018_15_a97 ER -
E. V. Semenko; T. I. Semenko. The shock front asymptotics in the linear problem of shock wave. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 950-970. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a97/
[1] E.V. Semenko, “Linear problem of shock wave disturbance analysis. Part 1: General solution, incidence, refraction and reflection in general case”, Siberian Electronic Mathematical Reports, 14 (2017), 451–472 | DOI | MR | Zbl
[2] E.V. Semenko, T.I. Semenko, “Linear problem of shock wave disturbance analysis. Part 2: Refraction and reflection of plane waves”, Siberian Electronic Mathematical Reports, 14 (2017), 473–492 | DOI | MR | Zbl
[3] E.V. Semenko, T.I. Semenko, “Linear problem of shock wave disturbance analysis. Part 3: Refraction and reflection in the neutral stability case”, Siberian Electronic Mathematical Reports, 14 (2017), 493–510 | DOI | MR | Zbl
[4] S.V. Iordanski, “On stability of a plane shock wave”, Journal of Applied Mathematics and Mechanics, 21 (1957), 465–472 | MR
[5] R.M. Zaidel, “The perturbations propagation in plane shock waves”, Journal of Applied Mechanics and Technical Physics, 4 (1967), 30–39
[6] W.K. Van Moorhem, A.R. George, “On the stability of plane shocks”, Journal of Fluid Mechanics, 68 (1975), 97–108 | DOI | Zbl
[7] J.W. Bates, “Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media”, Phys. Rev. E, 69:5 (2004), 056313, 16 pp. | DOI | MR
[8] A.M. Blokhin, D.L. Tkachev, L. O. Baldan, “Study of the stability in the problem on flowing around a wedge. The case of strong wave”, J. Math. Anal. Appl., 319:1 (2006), 248–277 | DOI | MR | Zbl
[9] A.M. Blokhin, D.L. Tkachev, “Stability of a supersonic flow about a wedge with weak shock wave”, Sb. Math., 200:2 (2009), 157-–184 | DOI | MR | Zbl
[10] L.D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd edition, Elsiver, 1987 | MR
[11] E.V. Semenko, “Linear problem of the shock wave disturbance in a non-classical case”, Physics of Fluids, 29 (2017), 066101 | DOI | MR
[12] E.V. Semenko, T.I. Semenko, “Spontaneous emission in the linear problem of shock wave disturbance in a non-classical case”, J. Phys.: Conf. Ser., 894 (2017), 012083 | DOI | MR
[13] G.F. Carrier, M. Krook, C. E. Pearson, Functions of a complex variable, Hod Books, Ithaca, N. Y., 1983 | MR | Zbl
[14] L. Hörmander, The analysis of linear partial differential operators I. Distribution theory and Fourier analysis, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl