The shock front asymptotics in the linear problem of shock wave
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 950-970.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is a direct continuation of the previous papers of the authors, devoted to the linear problem of shock wave disturbance. The asymptotics of shock front disturbance in time in the stability case at the presence of the pre-shock initial perturbations is studied. The two principal terms of the asymptotics are determined and studied. We want to point out that the first term of the asymptotics of first degree was not discovered before.
Keywords: shock wave, shock disturbance, shock front
Mots-clés : Fourier transform.
@article{SEMR_2018_15_a97,
     author = {E. V. Semenko and T. I. Semenko},
     title = {The shock front asymptotics in the linear problem of shock wave},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {950--970},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a97/}
}
TY  - JOUR
AU  - E. V. Semenko
AU  - T. I. Semenko
TI  - The shock front asymptotics in the linear problem of shock wave
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 950
EP  - 970
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a97/
LA  - en
ID  - SEMR_2018_15_a97
ER  - 
%0 Journal Article
%A E. V. Semenko
%A T. I. Semenko
%T The shock front asymptotics in the linear problem of shock wave
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 950-970
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a97/
%G en
%F SEMR_2018_15_a97
E. V. Semenko; T. I. Semenko. The shock front asymptotics in the linear problem of shock wave. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 950-970. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a97/

[1] E.V. Semenko, “Linear problem of shock wave disturbance analysis. Part 1: General solution, incidence, refraction and reflection in general case”, Siberian Electronic Mathematical Reports, 14 (2017), 451–472 | DOI | MR | Zbl

[2] E.V. Semenko, T.I. Semenko, “Linear problem of shock wave disturbance analysis. Part 2: Refraction and reflection of plane waves”, Siberian Electronic Mathematical Reports, 14 (2017), 473–492 | DOI | MR | Zbl

[3] E.V. Semenko, T.I. Semenko, “Linear problem of shock wave disturbance analysis. Part 3: Refraction and reflection in the neutral stability case”, Siberian Electronic Mathematical Reports, 14 (2017), 493–510 | DOI | MR | Zbl

[4] S.V. Iordanski, “On stability of a plane shock wave”, Journal of Applied Mathematics and Mechanics, 21 (1957), 465–472 | MR

[5] R.M. Zaidel, “The perturbations propagation in plane shock waves”, Journal of Applied Mechanics and Technical Physics, 4 (1967), 30–39

[6] W.K. Van Moorhem, A.R. George, “On the stability of plane shocks”, Journal of Fluid Mechanics, 68 (1975), 97–108 | DOI | Zbl

[7] J.W. Bates, “Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media”, Phys. Rev. E, 69:5 (2004), 056313, 16 pp. | DOI | MR

[8] A.M. Blokhin, D.L. Tkachev, L. O. Baldan, “Study of the stability in the problem on flowing around a wedge. The case of strong wave”, J. Math. Anal. Appl., 319:1 (2006), 248–277 | DOI | MR | Zbl

[9] A.M. Blokhin, D.L. Tkachev, “Stability of a supersonic flow about a wedge with weak shock wave”, Sb. Math., 200:2 (2009), 157-–184 | DOI | MR | Zbl

[10] L.D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd edition, Elsiver, 1987 | MR

[11] E.V. Semenko, “Linear problem of the shock wave disturbance in a non-classical case”, Physics of Fluids, 29 (2017), 066101 | DOI | MR

[12] E.V. Semenko, T.I. Semenko, “Spontaneous emission in the linear problem of shock wave disturbance in a non-classical case”, J. Phys.: Conf. Ser., 894 (2017), 012083 | DOI | MR

[13] G.F. Carrier, M. Krook, C. E. Pearson, Functions of a complex variable, Hod Books, Ithaca, N. Y., 1983 | MR | Zbl

[14] L. Hörmander, The analysis of linear partial differential operators I. Distribution theory and Fourier analysis, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl