Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a96, author = {A. I. Furtsev}, title = {Differentiation of energy functional with respect to delamination's length in problem of contact between plate and beam}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {935--949}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a96/} }
TY - JOUR AU - A. I. Furtsev TI - Differentiation of energy functional with respect to delamination's length in problem of contact between plate and beam JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 935 EP - 949 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a96/ LA - ru ID - SEMR_2018_15_a96 ER -
%0 Journal Article %A A. I. Furtsev %T Differentiation of energy functional with respect to delamination's length in problem of contact between plate and beam %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 935-949 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a96/ %G ru %F SEMR_2018_15_a96
A. I. Furtsev. Differentiation of energy functional with respect to delamination's length in problem of contact between plate and beam. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 935-949. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a96/
[1] L. A. Caffarelli, A. Friedman, “The obstacle problem for the biharmonic operator”, Ann. Scuola Norm. Sup. Pisa, 6:1 (1979), 151–184 | MR | Zbl
[2] L. A. Caffarelli, A. Friedman, A. Torelli, “The two-obstacle problem for the biharmonic operator”, Pacific J. Math., 103:3 (1982), 325–335 | DOI | MR | Zbl
[3] B. Schild, “On the coincidence set in biharmonic variational inequalities with thin obstacles”, Ann. Scuola Norm. Sup. Pisa, 13:4 (1986), 559–616 | MR | Zbl
[4] G. Dal Maso, G. Paderni, “Variational inequalities for the biharmonic operator with varying obstacles”, Ann. Mat. Pura Appl., 153:1 (1988), 203–227 | DOI | MR | Zbl
[5] A. M. Khludnev, J. Sokolowski, Modelling and control in solid mechanics, Birkhauser Verlag, Basel–Boston–Berlin, 1997 | MR | Zbl
[6] A. M. Khludnev, K.-H. Hoffmann, N. D. Botkin, “The variational contact problem for elastic objects of different dimensions”, Sib. Math. J., 47:3 (2006), 584–593 | DOI | MR | Zbl
[7] A. M. Khludnev, “On unilateral contact of two plates aligned an angle to each other”, J. Appl. Mech. and Tech. Phys., 49:4 (2008), 553–-567 | DOI | MR | Zbl
[8] A. M. Khludnev, G. Leugering, “Unilateral contact problems for two perpendicular elastic structures”, J. Analysis and its Applications, 27:2 (2008), 157–177 | MR | Zbl
[9] A. M. Khludnev, A. Tani, “Unilateral contact problem for two inclined elastic bodies”, Eur. J. Mech. A Solids, 27:3 (2008), 365–377 | DOI | MR | Zbl
[10] T. A. Rotanova, “On the statements and solvability of the problems on the contact of two plates containing rigid inclusions”, Sib. Zh. Ind. Mat., 15:2 (2012), 107–118 (in Russian) | MR | Zbl
[11] N. V. Neustroeva, “Unilateral Contact of Elastic Plates to Rigid Inclusion”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009), 51–64 (in Russian) | Zbl
[12] A. I. Furtsev, “On contact of thin obstacle and plate, containing thin inclusion”, Sib. J. Pure and Applied Math., 17:4 (2017), 94–111 (in Russian)
[13] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
[14] A. M. Khludnev, “Theory of cracks with a possible contact of the crack edges”, Usp. Mekh., 3:4 (2005), 41–82
[15] J. Sokolowski, J. P. Zolesio, Introduction to shape optimization, Springer Verlag, Berlin, 1992 | MR | Zbl
[16] J. Sokolowski, A. A. Novotny, Topological derivatives in shape optimization, Springer Science Business Media, 2012 | MR
[17] A. M. Khludnev, J. Sokolowski, “Griffith formulae for elasticity systems with unilateral conditions in domains with cracks”, Eur. J. Mech. A Solids, 19:1 (2000), 105–119 | DOI | MR | Zbl
[18] M. Bach, A. M. Khludnev, V. A. Kovtunenko, “Derivatives of the energy functional for 2D-problems with a crack under signorini and friction conditions”, Math. Meth. Appl. Sci., 23:6 (2000), 515–534 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[19] E. M. Rudoy, “The Griffiths formula for a plate with a crack”, Sib. Zh. Ind. Mat., 5:3 (2002), 155–161 (in Russian) | MR
[20] V. A. Kovtunenko, “Nonconvex problem for crack with nonpenetration”, Z. Angew. Math. Mech., 85:4 (2005), 242–251. MR2131983 | DOI | MR | Zbl
[21] V. A. Kovtunenko, “Primal–dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration”, J. Appl. Math., 71:5 (2006), 635–657 | MR | Zbl
[22] E. M. Rudoy, “Differentiation of energy functionals in the problem on a curvilinear crack with possible contact between the shores”, Mech. Solids, 42:6 (2008), 935–946 | DOI | MR
[23] E. M. Rudoy, “Differentiation of energy functionals in the problem of a curvilinear crack in a plate with a possible contact of the crack faces”, J. Appl. Mech. Tech. Phys., 49:5 (2008), 832–845 | DOI | MR
[24] N. P. Lazarev, E. M. Rudoy, “Shape sensitivity analysis of Timoshenko’s plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl
[25] E. M. Rudoy, “The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529 | DOI | MR
[26] N. P. Lazarev, “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl
[27] E. M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl
[28] V. V. Shcherbakov, “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR
[29] A. M. Khludnev, V. V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler–Bernoulli inclusions”, Math. Mech. Solids, 22:11 (2017), 2180–2195 | DOI | MR | Zbl
[30] V. V. Shcherbakov, “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions”, Z. Angew. Math., 68:1 (2017), 26 | DOI | MR | Zbl