Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a95, author = {L. N. Bondar}, title = {Asymptotic properties of a solution to the {Cauchy} problem for one}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {894--905}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a95/} }
L. N. Bondar. Asymptotic properties of a solution to the Cauchy problem for one. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 894-905. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a95/
[1] Springer, New York, NY, 2006 | MR | MR | Zbl
[2] Siberian Math. J., 42 (2001), 865–883 | DOI | DOI | MR | Zbl
[3] Russian Acad. Sci. Dokl. Math., 49 (1994), 113–118 | MR | Zbl
[4] Maslennikova V. N., “Estimates in $L_p$ and asymptotic behavior of a solution to the Cauchy problem for the Sobolev system as $t\to \infty$”, Trudy Mat. Inst. Steklov, 103, 1968, 117–141 (in Russian) | MR | Zbl
[5] Siberian Math. J., 48 (2007), 784–797 | DOI | MR | Zbl
[6] Siberian Math. J., 27 (1986), 424–433 | DOI | MR | Zbl
[7] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Embedding Theorems and Applications to Differential Equations, Nauka, Novosibirsk, 1984 (in Russian) | MR