Asymptotic properties of a solution to the Cauchy problem for one
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 894-905.

Voir la notice de l'article provenant de la source Math-Net.Ru

In thе paper we investigate the asymptotic behavior as $t\to\infty$ of a solution to the Cauchy problem for one Sobolev type system with a right-hande side. The form of the limit vector-function is established and the convergence rate is obtained.
Keywords: Sobolev type system, Sobolev system, asymptotic behavior of solution.
@article{SEMR_2018_15_a95,
     author = {L. N. Bondar},
     title = {Asymptotic properties of a solution to the {Cauchy} problem for one},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {894--905},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a95/}
}
TY  - JOUR
AU  - L. N. Bondar
TI  - Asymptotic properties of a solution to the Cauchy problem for one
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 894
EP  - 905
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a95/
LA  - ru
ID  - SEMR_2018_15_a95
ER  - 
%0 Journal Article
%A L. N. Bondar
%T Asymptotic properties of a solution to the Cauchy problem for one
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 894-905
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a95/
%G ru
%F SEMR_2018_15_a95
L. N. Bondar. Asymptotic properties of a solution to the Cauchy problem for one. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 894-905. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a95/

[1] Springer, New York, NY, 2006 | MR | MR | Zbl

[2] Siberian Math. J., 42 (2001), 865–883 | DOI | DOI | MR | Zbl

[3] Russian Acad. Sci. Dokl. Math., 49 (1994), 113–118 | MR | Zbl

[4] Maslennikova V. N., “Estimates in $L_p$ and asymptotic behavior of a solution to the Cauchy problem for the Sobolev system as $t\to \infty$”, Trudy Mat. Inst. Steklov, 103, 1968, 117–141 (in Russian) | MR | Zbl

[5] Siberian Math. J., 48 (2007), 784–797 | DOI | MR | Zbl

[6] Siberian Math. J., 27 (1986), 424–433 | DOI | MR | Zbl

[7] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Embedding Theorems and Applications to Differential Equations, Nauka, Novosibirsk, 1984 (in Russian) | MR