The Cauchy problem for the degenerated partial differential equation of the high even order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 853-862

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a method for investigating the Cauchy problem for a degenerate differential equation of high even order. Applying the generalized Erdélyi–Kober operator, the formulated problem reduces to a problem for an equation without degeneracy. Further, necessary and sufficient conditions for reducing the order of the equation are proved. Two examples demonstrate the application of the developed method.
Keywords: Fractional integrals and derivatives, generalized Erdélyi–Kober operator, Bessel operator, degenerate differential equations.
@article{SEMR_2018_15_a94,
     author = {Sh. T. Karimov},
     title = {The {Cauchy} problem for the degenerated partial differential equation of the high even order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {853--862},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a94/}
}
TY  - JOUR
AU  - Sh. T. Karimov
TI  - The Cauchy problem for the degenerated partial differential equation of the high even order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 853
EP  - 862
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a94/
LA  - en
ID  - SEMR_2018_15_a94
ER  - 
%0 Journal Article
%A Sh. T. Karimov
%T The Cauchy problem for the degenerated partial differential equation of the high even order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 853-862
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a94/
%G en
%F SEMR_2018_15_a94
Sh. T. Karimov. The Cauchy problem for the degenerated partial differential equation of the high even order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 853-862. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a94/