Cauchy problem for high even order parabolic equation with time fractional derivative
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 696-706

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we construct a fundamental solution for a higher order parabolic equation with time-fractional derivative and study its properties. We solve the Cauchy problem for the equation under study and prove a uniqueness theorem in the class of fast-growing functions.
Keywords: fundamental solution, Riemann–Liouville fractional derivative, Cauchy problem, high order equation.
@article{SEMR_2018_15_a93,
     author = {L. L. Karasheva},
     title = {Cauchy problem  for high even order parabolic equation with time fractional derivative},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {696--706},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a93/}
}
TY  - JOUR
AU  - L. L. Karasheva
TI  - Cauchy problem  for high even order parabolic equation with time fractional derivative
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 696
EP  - 706
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a93/
LA  - ru
ID  - SEMR_2018_15_a93
ER  - 
%0 Journal Article
%A L. L. Karasheva
%T Cauchy problem  for high even order parabolic equation with time fractional derivative
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 696-706
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a93/
%G ru
%F SEMR_2018_15_a93
L. L. Karasheva. Cauchy problem  for high even order parabolic equation with time fractional derivative. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 696-706. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a93/