Cauchy problem for high even order parabolic equation with time fractional derivative
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 696-706.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we construct a fundamental solution for a higher order parabolic equation with time-fractional derivative and study its properties. We solve the Cauchy problem for the equation under study and prove a uniqueness theorem in the class of fast-growing functions.
Keywords: fundamental solution, Riemann–Liouville fractional derivative, Cauchy problem, high order equation.
@article{SEMR_2018_15_a93,
     author = {L. L. Karasheva},
     title = {Cauchy problem  for high even order parabolic equation with time fractional derivative},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {696--706},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a93/}
}
TY  - JOUR
AU  - L. L. Karasheva
TI  - Cauchy problem  for high even order parabolic equation with time fractional derivative
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 696
EP  - 706
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a93/
LA  - ru
ID  - SEMR_2018_15_a93
ER  - 
%0 Journal Article
%A L. L. Karasheva
%T Cauchy problem  for high even order parabolic equation with time fractional derivative
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 696-706
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a93/
%G ru
%F SEMR_2018_15_a93
L. L. Karasheva. Cauchy problem  for high even order parabolic equation with time fractional derivative. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 696-706. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a93/

[1] A. M. Nakhushev, Equations of mathematical biology, Vysshaya shkola, M., 1995 (Russian) | Zbl

[2] O. A. Ladyzhenskaya, “On the uniqueness of the solution of Cauchy's problem for a linear parabolic equation”, Mat. Sb., 27(69):2 (1950), 175–184 (Russian) | MR | Zbl

[3] L. Cattabriga, “Problemi al contorno per equazioni paraboliche di ordine 2n”, Rend. Semin. Mat. Univ. Padov, 28 (1958), 376–-401 | MR | Zbl

[4] A. N. Kochubei, “Fractional-order diffusion”, Differential Equations, 26:4 (1990), 485–-492 | MR | Zbl

[5] A. V. Pskhu, “The fundamental solution of a diffusion-wave equation of fractional order”, Izvestiya: Mathematics, 73:2 (2009), 351–392 | DOI | MR | Zbl

[6] O. P. Agrawal, “A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain”, Computers and Structures, 79 (2001), 1497–1501 | DOI | MR

[7] A. A. Voroshilov, A. A. Kilbas, “The Cauchy problem for the diffusion-wave equation with the Caputo partial derivative”, Differential equations, 42:5 (2006), 638–-649 | DOI | MR | Zbl

[8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[9] A. V. Pskhu, Partial differential equations of fractional order, Nauka, M., 2005 (Russian) | MR | Zbl

[10] M. V. Plekhanova, “Start control problems for fractional order evolution equations”, Chelyab. Fiz.-Mat. Zh., 1:3 (2016), 15–-36 | MR

[11] E. A. Romanova, V. E. Fedorov, “Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case”, Mathematical notes of NEFU, 23:4 (2016), 58–-72 | Zbl

[12] M. V. Plekhanova, “Solvability of control problems for degenerate evolution equations of fractional order”, Chelyab. Fiz.-Mat. Zh., 2:1 (2017), 53–-65 | MR

[13] E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:1 (1933), 71–79 | DOI | MR | Zbl

[14] E. M. Wright, “The generalized Bessel function of order greater than one”, Quart. J. Math., Oxford Ser., 11 (1940), 36–48 | DOI | MR