Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a91, author = {A. E. Mamontov and D. A. Prokudin}, title = {Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {631--649}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/} }
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 631 EP - 649 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/ LA - en ID - SEMR_2018_15_a91 ER -
%0 Journal Article %A A. E. Mamontov %A D. A. Prokudin %T Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 631-649 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/ %G en %F SEMR_2018_15_a91
A. E. Mamontov; D. A. Prokudin. Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 631-649. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/
[1] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl
[2] V. N. Dorovsky, Yu. V. Perepechko, “Theory of the partial melting”, Sov. Geology and Geophysics, 9 (1989), 56–64 (in Russian)
[3] J. Frehse, S. Goj, J. Malek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl
[4] J. Frehse, S. Goj, J. Malek, “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl
[5] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., 53:4 (2008), 319–345 | DOI | MR | Zbl
[6] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods and Applications of Analysis, 20:2 (2013), 179–195 | DOI | MR | Zbl
[7] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat–conducting fluids”, Izvestiya: Mathematics, 78:3 (2014), 554–579 | DOI | MR | Zbl
[8] A. E. Mamontov, D. A. Prokudin, Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory, 18 Oct 2016, 14 pp., arXiv: 1610.05536 [math.AP] | MR
[9] A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 664–693 (in Russian) | MR | Zbl
[10] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | MR | Zbl
[11] A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 541–583 (in Russian) | MR | Zbl
[12] A. E. Mamontov, D. A. Prokudin, “Modeling viscous compressible barotropic multi-fluid flows”, J. of Physics: Conference Series, 894 (2017), 012058, 8 pp. | DOI | MR
[13] A. E. Mamontov, D. A. Prokudin, Modeling viscous compressible barotropic multi-fluid flows, 24 Aug 2017, 13 pp., arXiv: 1708.07319 [math.AP] | MR
[14] A. E. Mamontov, D. A. Prokudin, “Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory”, Siberian Electr. Math. Reports, 14 (2017), 388–397 | MR | Zbl
[15] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressibl6e fluids”, Siberian Math. J., 58:1 (2017), 113–127 | DOI | MR | Zbl
[16] A. E. Mamontov, D. A. Prokudin, Solvability of a steady boundary-value problem for the equations of one-temperature viscous compressible heat-conducting bifluids, 18 Oct 2017, 36 pp., arXiv: 1710.06626 [math.AP] | MR
[17] A. E. Mamontov, D. A. Prokudin, Global solvability of 1D equations of viscous compressible multi-fluids, 25 Aug 2017, 11 pp., arXiv: 1708.07662 [math.AP] | MR
[18] A. E. Mamontov, D. A. Prokudin, “Global solvability of 1D equations of viscous compressible multi-fluids”, J. of Physics: Conference Series, 894 (2017), 012059, 7 pp. | DOI
[19] A. E. Mamontov, D. A. Prokudin, “Local solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids”, J. of Math. Sciences, 231:2 (2018), 227–242 | DOI
[20] A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izvestiya: Mathematics, 82:1 (2018), 140–185 | DOI | MR
[21] R. I. Nigmatulin, Dynamics of multiphase media, v. 1, Hemisphere, N.Y., 1990
[22] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl
[23] D. A. Prokudin, “Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids”, Siberian Electr. Math. Reports, 14 (2017), 568–585 (in Russian) | MR | Zbl
[24] D. A. Prokudin, “Global solvability of the initial boundary value problem for a model system of one-dimensional equations of polytropic flows of viscous compressible fluid mixtures”, J. of Physics: Conference Series, 894 (2017), 012076, 6 pp. | DOI | MR
[25] D. A. Prokudin, M. V. Krayushkina, “Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 417–428 | DOI | MR | Zbl
[26] K. L. Rajagopal, L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 35, World Scientific, River Edge, NJ, 1995 | MR | Zbl