Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 631-649

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the initial-boundary value problem governing unsteady polytropic motions of viscous compressible multifluids. We prove the existence and uniqueness of a strong solution to the problem.
Keywords: multifluid, mixture of fluids, uniqueness, initial-boundary value problem, unsteady motion.
Mots-clés : viscous compressible fluid, existence
@article{SEMR_2018_15_a91,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {631--649},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 631
EP  - 649
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/
LA  - en
ID  - SEMR_2018_15_a91
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 631-649
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/
%G en
%F SEMR_2018_15_a91
A. E. Mamontov; D. A. Prokudin. Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 631-649. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/