Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 631-649.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the initial-boundary value problem governing unsteady polytropic motions of viscous compressible multifluids. We prove the existence and uniqueness of a strong solution to the problem.
Keywords: multifluid, mixture of fluids, uniqueness, initial-boundary value problem, unsteady motion.
Mots-clés : viscous compressible fluid, existence
@article{SEMR_2018_15_a91,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {631--649},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 631
EP  - 649
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/
LA  - en
ID  - SEMR_2018_15_a91
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 631-649
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/
%G en
%F SEMR_2018_15_a91
A. E. Mamontov; D. A. Prokudin. Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 631-649. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a91/

[1] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl

[2] V. N. Dorovsky, Yu. V. Perepechko, “Theory of the partial melting”, Sov. Geology and Geophysics, 9 (1989), 56–64 (in Russian)

[3] J. Frehse, S. Goj, J. Malek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl

[4] J. Frehse, S. Goj, J. Malek, “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl

[5] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., 53:4 (2008), 319–345 | DOI | MR | Zbl

[6] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods and Applications of Analysis, 20:2 (2013), 179–195 | DOI | MR | Zbl

[7] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat–conducting fluids”, Izvestiya: Mathematics, 78:3 (2014), 554–579 | DOI | MR | Zbl

[8] A. E. Mamontov, D. A. Prokudin, Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory, 18 Oct 2016, 14 pp., arXiv: 1610.05536 [math.AP] | MR

[9] A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 664–693 (in Russian) | MR | Zbl

[10] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | MR | Zbl

[11] A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 541–583 (in Russian) | MR | Zbl

[12] A. E. Mamontov, D. A. Prokudin, “Modeling viscous compressible barotropic multi-fluid flows”, J. of Physics: Conference Series, 894 (2017), 012058, 8 pp. | DOI | MR

[13] A. E. Mamontov, D. A. Prokudin, Modeling viscous compressible barotropic multi-fluid flows, 24 Aug 2017, 13 pp., arXiv: 1708.07319 [math.AP] | MR

[14] A. E. Mamontov, D. A. Prokudin, “Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory”, Siberian Electr. Math. Reports, 14 (2017), 388–397 | MR | Zbl

[15] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressibl6e fluids”, Siberian Math. J., 58:1 (2017), 113–127 | DOI | MR | Zbl

[16] A. E. Mamontov, D. A. Prokudin, Solvability of a steady boundary-value problem for the equations of one-temperature viscous compressible heat-conducting bifluids, 18 Oct 2017, 36 pp., arXiv: 1710.06626 [math.AP] | MR

[17] A. E. Mamontov, D. A. Prokudin, Global solvability of 1D equations of viscous compressible multi-fluids, 25 Aug 2017, 11 pp., arXiv: 1708.07662 [math.AP] | MR

[18] A. E. Mamontov, D. A. Prokudin, “Global solvability of 1D equations of viscous compressible multi-fluids”, J. of Physics: Conference Series, 894 (2017), 012059, 7 pp. | DOI

[19] A. E. Mamontov, D. A. Prokudin, “Local solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids”, J. of Math. Sciences, 231:2 (2018), 227–242 | DOI

[20] A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izvestiya: Mathematics, 82:1 (2018), 140–185 | DOI | MR

[21] R. I. Nigmatulin, Dynamics of multiphase media, v. 1, Hemisphere, N.Y., 1990

[22] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[23] D. A. Prokudin, “Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids”, Siberian Electr. Math. Reports, 14 (2017), 568–585 (in Russian) | MR | Zbl

[24] D. A. Prokudin, “Global solvability of the initial boundary value problem for a model system of one-dimensional equations of polytropic flows of viscous compressible fluid mixtures”, J. of Physics: Conference Series, 894 (2017), 012076, 6 pp. | DOI | MR

[25] D. A. Prokudin, M. V. Krayushkina, “Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 417–428 | DOI | MR | Zbl

[26] K. L. Rajagopal, L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 35, World Scientific, River Edge, NJ, 1995 | MR | Zbl