Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a90, author = {G. S. Vasiliev and Jian-Gang Tang and B. Zh. Mamasoliev}, title = {Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {585--602}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a90/} }
TY - JOUR AU - G. S. Vasiliev AU - Jian-Gang Tang AU - B. Zh. Mamasoliev TI - Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 585 EP - 602 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a90/ LA - ru ID - SEMR_2018_15_a90 ER -
%0 Journal Article %A G. S. Vasiliev %A Jian-Gang Tang %A B. Zh. Mamasoliev %T Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 585-602 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a90/ %G ru %F SEMR_2018_15_a90
G. S. Vasiliev; Jian-Gang Tang; B. Zh. Mamasoliev. Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 585-602. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a90/
[1] R. Hirota, “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1194 | DOI | Zbl
[2] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[3] C. Rogers, W.F. Shadwick, Backlund Transformations and Their Applications, Academic Press, New York, 1982 | MR | Zbl
[4] V.A. Matveev, M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin etc., 1991 | MR | Zbl
[5] F. Cariello, M. Tabor, “Similarity reductions from extended Painleve expansions for nonintegrable evolution equations”, Physica D, 53 (1991), 59–70 | DOI | MR | Zbl
[6] L.V. Ovsyannikov, Group analysis of differential equations, Nauka, M., 1978 (in Russian) | MR | Zbl
[7] G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, New York, 1989 | MR | Zbl
[8] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1993 | MR | Zbl
[9] G.W. Bluman, S. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New York, 2002 | MR | Zbl
[10] V.I. Lahno, S.V. Spichak, V.I. Strogny, Symmetry analysis of evolution equations, Institute of Computer Studies, M.–Izhevsk, 2004 (in Russian)
[11] S.V. Golovin, A.A. Chesnokov, Group analysis of differential equations, Novosibirsk State University, Novosibirsk, 2009 (in Russian)
[12] G.W. Bluman, A. Cheviakov, S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York, 2010 | MR | Zbl
[13] M.L. Wang, Y.B. Zhou, Z.B Li, “Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics”, Phys. Lett. A, 216 (1996), 67–75 | DOI | Zbl
[14] J.H. He, “Variational iteration method-a kind of non-linear analytical technique: Some examples”, Int. J. Nonlinear Mech., 34:4 (1999), 699–708 | DOI | Zbl
[15] J.H. He, “Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics”, Int. J. Turbo Jet-Engines, 14:1 (1997), 23–28
[16] A.V. Panov, “Group classification of the system of equations for the mechanics of a two-phase medium”, Bulletin of the Chelyabinsk State University, 13 (2011), 38–48 (in Russian) | MR
[17] V.N. Dorovsky, Yu.V. Perepechko, “Theory of Partial Melting”, Geology and Geophysics, 9 (1989), 56–64 (in Russian)
[18] V.E. Fedorov, A.V. Panov, “Invariant and partially invariant solutions of the system of equations for the mechanics of a two-phase medium”, Bulletin of the Chelyabinsk State University, 11 (2011), 65–68 (in Russian) | MR