Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 585-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

We found the main core of Lie groups of transformations for a one-dimensional system of two-velocity hydrodynamic equations with equilibrium of pressure phases, using the theory of Lie groups and Lie algebra. Also, all systems of differential equations for invariant and partially invariant solutions for all non-subgroups, algebras that are included in optimal systems are written out. In some cases, solutions have been found.
Keywords: two-velocity hydrodynamic, Lie algebra
Mots-clés : invariant solution.
@article{SEMR_2018_15_a90,
     author = {G. S. Vasiliev and Jian-Gang Tang and B. Zh. Mamasoliev},
     title = {Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {585--602},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a90/}
}
TY  - JOUR
AU  - G. S. Vasiliev
AU  - Jian-Gang Tang
AU  - B. Zh. Mamasoliev
TI  - Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 585
EP  - 602
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a90/
LA  - ru
ID  - SEMR_2018_15_a90
ER  - 
%0 Journal Article
%A G. S. Vasiliev
%A Jian-Gang Tang
%A B. Zh. Mamasoliev
%T Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 585-602
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a90/
%G ru
%F SEMR_2018_15_a90
G. S. Vasiliev; Jian-Gang Tang; B. Zh. Mamasoliev. Invariant submodels of system equations of two-velocity hydrodynamics with equilibrium of pressure phases. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 585-602. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a90/

[1] R. Hirota, “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1194 | DOI | Zbl

[2] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[3] C. Rogers, W.F. Shadwick, Backlund Transformations and Their Applications, Academic Press, New York, 1982 | MR | Zbl

[4] V.A. Matveev, M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin etc., 1991 | MR | Zbl

[5] F. Cariello, M. Tabor, “Similarity reductions from extended Painleve expansions for nonintegrable evolution equations”, Physica D, 53 (1991), 59–70 | DOI | MR | Zbl

[6] L.V. Ovsyannikov, Group analysis of differential equations, Nauka, M., 1978 (in Russian) | MR | Zbl

[7] G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, New York, 1989 | MR | Zbl

[8] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1993 | MR | Zbl

[9] G.W. Bluman, S. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New York, 2002 | MR | Zbl

[10] V.I. Lahno, S.V. Spichak, V.I. Strogny, Symmetry analysis of evolution equations, Institute of Computer Studies, M.–Izhevsk, 2004 (in Russian)

[11] S.V. Golovin, A.A. Chesnokov, Group analysis of differential equations, Novosibirsk State University, Novosibirsk, 2009 (in Russian)

[12] G.W. Bluman, A. Cheviakov, S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York, 2010 | MR | Zbl

[13] M.L. Wang, Y.B. Zhou, Z.B Li, “Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics”, Phys. Lett. A, 216 (1996), 67–75 | DOI | Zbl

[14] J.H. He, “Variational iteration method-a kind of non-linear analytical technique: Some examples”, Int. J. Nonlinear Mech., 34:4 (1999), 699–708 | DOI | Zbl

[15] J.H. He, “Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics”, Int. J. Turbo Jet-Engines, 14:1 (1997), 23–28

[16] A.V. Panov, “Group classification of the system of equations for the mechanics of a two-phase medium”, Bulletin of the Chelyabinsk State University, 13 (2011), 38–48 (in Russian) | MR

[17] V.N. Dorovsky, Yu.V. Perepechko, “Theory of Partial Melting”, Geology and Geophysics, 9 (1989), 56–64 (in Russian)

[18] V.E. Fedorov, A.V. Panov, “Invariant and partially invariant solutions of the system of equations for the mechanics of a two-phase medium”, Bulletin of the Chelyabinsk State University, 11 (2011), 65–68 (in Russian) | MR