On $\mathcal{T}$-$\delta$-noncosingular modules
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 321-331

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce and study the notion of $\mathcal{T}$-$\delta$-noncosingular modules. The aim of this paper is to present some applications. Let $R$ be a commutative ring. If $R_{R}$ is $\mathcal{T}$-$\delta$-noncosingular, we show right $R_{R}$ is nonsingular. Also we prove that any singular regular module is an $\mathcal{T}$-$\delta$-noncosingular module.
Keywords: $\mathcal{T}$-$\delta$-noncosingular module, $\delta$-lifting module.
@article{SEMR_2018_15_a9,
     author = {Y. Talebi and M. Hosseinpour and T. C. Quynh},
     title = {On $\mathcal{T}$-$\delta$-noncosingular modules},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {321--331},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/}
}
TY  - JOUR
AU  - Y. Talebi
AU  - M. Hosseinpour
AU  - T. C. Quynh
TI  - On $\mathcal{T}$-$\delta$-noncosingular modules
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 321
EP  - 331
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/
LA  - en
ID  - SEMR_2018_15_a9
ER  - 
%0 Journal Article
%A Y. Talebi
%A M. Hosseinpour
%A T. C. Quynh
%T On $\mathcal{T}$-$\delta$-noncosingular modules
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 321-331
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/
%G en
%F SEMR_2018_15_a9
Y. Talebi; M. Hosseinpour; T. C. Quynh. On $\mathcal{T}$-$\delta$-noncosingular modules. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 321-331. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/