Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a9, author = {Y. Talebi and M. Hosseinpour and T. C. Quynh}, title = {On $\mathcal{T}$-$\delta$-noncosingular modules}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {321--331}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/} }
TY - JOUR AU - Y. Talebi AU - M. Hosseinpour AU - T. C. Quynh TI - On $\mathcal{T}$-$\delta$-noncosingular modules JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 321 EP - 331 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/ LA - en ID - SEMR_2018_15_a9 ER -
Y. Talebi; M. Hosseinpour; T. C. Quynh. On $\mathcal{T}$-$\delta$-noncosingular modules. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 321-331. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/
[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992 | MR | Zbl
[2] K. I. Beidar, F. Kasch, “Good conditions for the total”, Trends Mathematics, Birkhäuser, Boston, MA, 2001, 43–65 | MR | Zbl
[3] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Marcel Dekker, Inc. VIII, New York–Basel, 1976 | MR | Zbl
[4] F. Kasch, A. Mader, Regularity and Substructures of Hom, Frontiers in Mathematics, Birkhäuser, Basel, 2009 | MR | Zbl
[5] D. Keskin Tütüncü, R. Tribak, “On $\mathcal{T}$-noconsingular modules”, Bull. Aust. Math. Soc., 80:3 (2009), 462–471 | DOI | MR | Zbl
[6] D. Keskin Tütüncü, R. Tribak, “On dual Baer modules”, Glasg. Math. J., 52:2 (2010), 261–269 | DOI | MR | Zbl
[7] M. T. Kosan, “$\delta$-lifting and $\delta$-supplemented modules”, Algebra Colloq., 14:1 (2007), 53–60 | DOI | MR | Zbl
[8] G. Lee, S. T. Rizvi, C. S. Roman, “Dual Rickart modules”, Comm. Algebra, 39 (2011), 4036–4058 | DOI | MR | Zbl
[9] W. K. Nicholson, “Semiregular modules and rings”, Canad. J. Math., 28:5 (1976), 1105–1120 | DOI | MR | Zbl
[10] W. K. Nicholson, Y. Zhou, “Semiregular morphisms”, Comm. Algebra, 34 (2006), 219–233 | DOI | MR
[11] A. C. Özcan, “The torsion theory cogenerated by $\delta$-$M$-small modules and GCO-modules”, Comm. Algebra, 35:2 (2007), 623–633 | DOI | MR | Zbl
[12] T. C. Quynh, M. T. Kosan, L. V. Thuyet, “On (semi)regular morphisms”, Comm. Algebra, 41:8 (2013), 2933–2947 | DOI | MR | Zbl
[13] Y. Talebi, N. Vanaja, “The torsion theory cogenerated by $M$-small modules”, Comm. Algebra, 30:3 (2002), 1449–1460 | DOI | MR | Zbl
[14] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia etc., 1991 | MR | Zbl
[15] J. Zelmanowitz, “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl
[16] Y. Zhou, “Generalizations of perfect, semiperfect, and semiregular rings”, Algebra Colloq., 7:3 (2000), 305–318 | DOI | MR | Zbl