On $\mathcal{T}$-$\delta$-noncosingular modules
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 321-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce and study the notion of $\mathcal{T}$-$\delta$-noncosingular modules. The aim of this paper is to present some applications. Let $R$ be a commutative ring. If $R_{R}$ is $\mathcal{T}$-$\delta$-noncosingular, we show right $R_{R}$ is nonsingular. Also we prove that any singular regular module is an $\mathcal{T}$-$\delta$-noncosingular module.
Keywords: $\mathcal{T}$-$\delta$-noncosingular module, $\delta$-lifting module.
@article{SEMR_2018_15_a9,
     author = {Y. Talebi and M. Hosseinpour and T. C. Quynh},
     title = {On $\mathcal{T}$-$\delta$-noncosingular modules},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {321--331},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/}
}
TY  - JOUR
AU  - Y. Talebi
AU  - M. Hosseinpour
AU  - T. C. Quynh
TI  - On $\mathcal{T}$-$\delta$-noncosingular modules
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 321
EP  - 331
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/
LA  - en
ID  - SEMR_2018_15_a9
ER  - 
%0 Journal Article
%A Y. Talebi
%A M. Hosseinpour
%A T. C. Quynh
%T On $\mathcal{T}$-$\delta$-noncosingular modules
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 321-331
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/
%G en
%F SEMR_2018_15_a9
Y. Talebi; M. Hosseinpour; T. C. Quynh. On $\mathcal{T}$-$\delta$-noncosingular modules. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 321-331. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a9/

[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992 | MR | Zbl

[2] K. I. Beidar, F. Kasch, “Good conditions for the total”, Trends Mathematics, Birkhäuser, Boston, MA, 2001, 43–65 | MR | Zbl

[3] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Marcel Dekker, Inc. VIII, New York–Basel, 1976 | MR | Zbl

[4] F. Kasch, A. Mader, Regularity and Substructures of Hom, Frontiers in Mathematics, Birkhäuser, Basel, 2009 | MR | Zbl

[5] D. Keskin Tütüncü, R. Tribak, “On $\mathcal{T}$-noconsingular modules”, Bull. Aust. Math. Soc., 80:3 (2009), 462–471 | DOI | MR | Zbl

[6] D. Keskin Tütüncü, R. Tribak, “On dual Baer modules”, Glasg. Math. J., 52:2 (2010), 261–269 | DOI | MR | Zbl

[7] M. T. Kosan, “$\delta$-lifting and $\delta$-supplemented modules”, Algebra Colloq., 14:1 (2007), 53–60 | DOI | MR | Zbl

[8] G. Lee, S. T. Rizvi, C. S. Roman, “Dual Rickart modules”, Comm. Algebra, 39 (2011), 4036–4058 | DOI | MR | Zbl

[9] W. K. Nicholson, “Semiregular modules and rings”, Canad. J. Math., 28:5 (1976), 1105–1120 | DOI | MR | Zbl

[10] W. K. Nicholson, Y. Zhou, “Semiregular morphisms”, Comm. Algebra, 34 (2006), 219–233 | DOI | MR

[11] A. C. Özcan, “The torsion theory cogenerated by $\delta$-$M$-small modules and GCO-modules”, Comm. Algebra, 35:2 (2007), 623–633 | DOI | MR | Zbl

[12] T. C. Quynh, M. T. Kosan, L. V. Thuyet, “On (semi)regular morphisms”, Comm. Algebra, 41:8 (2013), 2933–2947 | DOI | MR | Zbl

[13] Y. Talebi, N. Vanaja, “The torsion theory cogenerated by $M$-small modules”, Comm. Algebra, 30:3 (2002), 1449–1460 | DOI | MR | Zbl

[14] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia etc., 1991 | MR | Zbl

[15] J. Zelmanowitz, “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl

[16] Y. Zhou, “Generalizations of perfect, semiperfect, and semiregular rings”, Algebra Colloq., 7:3 (2000), 305–318 | DOI | MR | Zbl