Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 422-435

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem on small oscillations of an ideal stratified fluid in a vessel with a free surface completely covered with the elastic ice. The developed approach is based on application of the theory of operator matrices acting in the Hilbert space, the initial boundary value problem is reduced to the Cauchy problem for differential-operator of a special form. For this Cauchy problem a theorem on strong solvability is proved.
Keywords: stratification effect in ideal fluids, initial boundary value problem, differential equation in Hilbert space, Cauchy problem, strong solution.
@article{SEMR_2018_15_a89,
     author = {D. O. Tsvetkov},
     title = {Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {422--435},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a89/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 422
EP  - 435
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a89/
LA  - ru
ID  - SEMR_2018_15_a89
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 422-435
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a89/
%G ru
%F SEMR_2018_15_a89
D. O. Tsvetkov. Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 422-435. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a89/