Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 422-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem on small oscillations of an ideal stratified fluid in a vessel with a free surface completely covered with the elastic ice. The developed approach is based on application of the theory of operator matrices acting in the Hilbert space, the initial boundary value problem is reduced to the Cauchy problem for differential-operator of a special form. For this Cauchy problem a theorem on strong solvability is proved.
Keywords: stratification effect in ideal fluids, initial boundary value problem, differential equation in Hilbert space, Cauchy problem, strong solution.
@article{SEMR_2018_15_a89,
     author = {D. O. Tsvetkov},
     title = {Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {422--435},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a89/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 422
EP  - 435
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a89/
LA  - ru
ID  - SEMR_2018_15_a89
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 422-435
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a89/
%G ru
%F SEMR_2018_15_a89
D. O. Tsvetkov. Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 422-435. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a89/

[1] V.K. Krauss, Internal waves, L., 1968

[2] J. Turner, Effects of buoyancy in fluids, M., 1977

[3] Yu.Z. Mitropol'sky, Dynamics of internal gravitational waves in the ocean, L., 1981 | MR

[4] S.A. Gabov, A.G. Sveshnikov, Problems of dynamics of stratified fluids, M., 1986 | MR

[5] N.D. Kopachevsky, A.N. Temnov, “Oscillations of a stratified fluid in a basin of arbitrary shape”, Computational Mathematics and Mathematical Physics, 164:5 (1986), 734–755 | MR | Zbl

[6] N.D. Kopachevsky, D.O. Tsvetkov, “Oscillations of stratificated fluids”, Journal of Math Sciences, 164:4 (2010), 574–602 | DOI | MR | Zbl

[7] N.D. Kopachevsky, S.G. Krein, Ngo Zuy Can, Operator methods are in linear hydrodynamics: evolution and spectral problems, Nauka, M., 1989 | MR | Zbl

[8] M.A. Soldatov, Mathematical aspects oscillations theory of an fluid in a basin partially closed by ice, The thesis for obtaining the Candidate of physical and mathematical degree on the speciality 01.01.03 - mathematical physics, Kharkov, 2003

[9] K. Rektorys, Variational methods in mathematical physics and engineering, Mir, M., 1985 | MR | Zbl

[10] N.D. Kopachevsky, Abstract Green formula and some of its applications, Simferopol, 2016

[11] N.D. Kopachevsky, Volterra integrodifferential equations on a Hilbert space, Simferopol, 2012