Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a87, author = {A. V. Neklyudov}, title = {Asymptotic of solutions of two-dimesional {Gauss--Bierbach--Rademacher} equation with variable coefficients in external area}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {338--354}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/} }
TY - JOUR AU - A. V. Neklyudov TI - Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation with variable coefficients in external area JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 338 EP - 354 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/ LA - ru ID - SEMR_2018_15_a87 ER -
%0 Journal Article %A A. V. Neklyudov %T Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation with variable coefficients in external area %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 338-354 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/ %G ru %F SEMR_2018_15_a87
A. V. Neklyudov. Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation with variable coefficients in external area. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 338-354. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/
[1] I. N. Vekua, “Some properties of solutions of Gauss equation”, Trudy Mat. Inst. Steklov, 64, 1961, 5–8 | Zbl
[2] L. Bieberbach, “$\Delta u = e^u$ and automorphic funktions”, Math. Ann., 77 (1916), 173–212 | DOI
[3] H. Rademacher, Differential and integral equations of mechanics und physics, Vieweg, Braunschweig, 1935
[4] V. A. Kondrat'ev, O. A. Oleinik, “On asymptotics for solutions to nonlinear elliptic equations”, Russ. Math. Surv., 48:4 (1993), 184–185
[5] O. A. Oleinik, Some asymptotic problems in the theory of partial differential equations, Cambridge Univ. Press, Cambridge, 1996 | Zbl
[6] A. I. Nasrullaev, “Asymptotics of solutions of Neumann's problem for the equation $\Delta u-e^u=0$ in a semi-infinite cylinder”, Russ. Math. Surv., 50:3 (1995), 161–162 | DOI | Zbl
[7] A. V. Neklyudov, “Behavior of solutions to Gauss–Bieberbach–Rademacher equation on plane”, Ufa Mathematical Journal, 6:3 (2014), 85–94 | DOI
[8] A. V. Neklyudov, “The behavior of solutions of the nonlinear biharmonic equation in an unbounded domain”, Math. Notes, 95:2 (2014), 224–231 | DOI | Zbl
[9] A. V. Neklyudov, “The behavior of solutions of semilinear elliptic equations of second order of the $Lu=e^u$ in the infinite cylinder”, Math. Notes, 85:3 (2009), 397–408 | DOI | Zbl
[10] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Super. Pisa. Ser. 3, 17:1–2 (1963), 43–77 | Zbl
[11] V. A. Kondrat'ev, O. A. Oleinik, “Asymptotics in a neighborhood of infinity of solutions with finite Dirichlet integral of second-order elliptic equations”, Journal of Soviet mathematics, 47:4 (1989), 2596–2607 | DOI | Zbl
[12] D. Gilbarg, N. Trudinger, Elliptic partial differentiol equations of second order, Springer Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | Zbl