Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation with variable coefficients in external area
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 338-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an asymptotic behavior at infinity of solutions of a semi-linear second order elliptic equation containing exponential nonlinear term. We establish that any solution in a circle’s exterior tends to a negative infinity with the same rate as the fundamental solution of respective linear homogeneous elliptic equation.
Keywords: semi-linear elliptic equation, Bieberbach–Rademacher equation, asymptotic behavior.
Mots-clés : Gauss equation
@article{SEMR_2018_15_a87,
     author = {A. V. Neklyudov},
     title = {Asymptotic of solutions of two-dimesional {Gauss--Bierbach--Rademacher} equation  with variable coefficients  in external area},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {338--354},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/}
}
TY  - JOUR
AU  - A. V. Neklyudov
TI  - Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation  with variable coefficients  in external area
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 338
EP  - 354
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/
LA  - ru
ID  - SEMR_2018_15_a87
ER  - 
%0 Journal Article
%A A. V. Neklyudov
%T Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation  with variable coefficients  in external area
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 338-354
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/
%G ru
%F SEMR_2018_15_a87
A. V. Neklyudov. Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation  with variable coefficients  in external area. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 338-354. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/

[1] I. N. Vekua, “Some properties of solutions of Gauss equation”, Trudy Mat. Inst. Steklov, 64, 1961, 5–8 | Zbl

[2] L. Bieberbach, “$\Delta u = e^u$ and automorphic funktions”, Math. Ann., 77 (1916), 173–212 | DOI

[3] H. Rademacher, Differential and integral equations of mechanics und physics, Vieweg, Braunschweig, 1935

[4] V. A. Kondrat'ev, O. A. Oleinik, “On asymptotics for solutions to nonlinear elliptic equations”, Russ. Math. Surv., 48:4 (1993), 184–185

[5] O. A. Oleinik, Some asymptotic problems in the theory of partial differential equations, Cambridge Univ. Press, Cambridge, 1996 | Zbl

[6] A. I. Nasrullaev, “Asymptotics of solutions of Neumann's problem for the equation $\Delta u-e^u=0$ in a semi-infinite cylinder”, Russ. Math. Surv., 50:3 (1995), 161–162 | DOI | Zbl

[7] A. V. Neklyudov, “Behavior of solutions to Gauss–Bieberbach–Rademacher equation on plane”, Ufa Mathematical Journal, 6:3 (2014), 85–94 | DOI

[8] A. V. Neklyudov, “The behavior of solutions of the nonlinear biharmonic equation in an unbounded domain”, Math. Notes, 95:2 (2014), 224–231 | DOI | Zbl

[9] A. V. Neklyudov, “The behavior of solutions of semilinear elliptic equations of second order of the $Lu=e^u$ in the infinite cylinder”, Math. Notes, 85:3 (2009), 397–408 | DOI | Zbl

[10] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Super. Pisa. Ser. 3, 17:1–2 (1963), 43–77 | Zbl

[11] V. A. Kondrat'ev, O. A. Oleinik, “Asymptotics in a neighborhood of infinity of solutions with finite Dirichlet integral of second-order elliptic equations”, Journal of Soviet mathematics, 47:4 (1989), 2596–2607 | DOI | Zbl

[12] D. Gilbarg, N. Trudinger, Elliptic partial differentiol equations of second order, Springer Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | Zbl