Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation with variable coefficients in external area
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 338-354

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an asymptotic behavior at infinity of solutions of a semi-linear second order elliptic equation containing exponential nonlinear term. We establish that any solution in a circle’s exterior tends to a negative infinity with the same rate as the fundamental solution of respective linear homogeneous elliptic equation.
Keywords: semi-linear elliptic equation, Bieberbach–Rademacher equation, asymptotic behavior.
Mots-clés : Gauss equation
@article{SEMR_2018_15_a87,
     author = {A. V. Neklyudov},
     title = {Asymptotic of solutions of two-dimesional {Gauss--Bierbach--Rademacher} equation  with variable coefficients  in external area},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {338--354},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/}
}
TY  - JOUR
AU  - A. V. Neklyudov
TI  - Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation  with variable coefficients  in external area
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 338
EP  - 354
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/
LA  - ru
ID  - SEMR_2018_15_a87
ER  - 
%0 Journal Article
%A A. V. Neklyudov
%T Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation  with variable coefficients  in external area
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 338-354
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/
%G ru
%F SEMR_2018_15_a87
A. V. Neklyudov. Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation  with variable coefficients  in external area. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 338-354. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a87/