On modeling elastic bodies with defects
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 153-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns a mathematical analysis of equilibrium problems for 2D elastic bodies with thin defects. The defects are characterized with a damage parameter. A presence of defects implies that the problems are formulated in a nonsmooth domain with a cut. Nonlinear boundary conditions at the cut faces are considered to prevent a mutual penetration between the faces. Weak and strong formulations of the problems are analyzed. The paper provides an asymptotic analysis with respect to the damage parameter. We obtain invariant integrals over curves surrounding the defect tip. An optimal control problem is investigated with a cost functional equal to the derivative of the energy functional with respect to the defect length, and the damage parameter being a control function.
Keywords: defect, damage parameter, non-penetration boundary conditions, variational inequality, optimal control, derivative of energy functional.
@article{SEMR_2018_15_a86,
     author = {A. M. Khludnev},
     title = {On modeling elastic bodies with defects},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {153--166},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a86/}
}
TY  - JOUR
AU  - A. M. Khludnev
TI  - On modeling elastic bodies with defects
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 153
EP  - 166
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a86/
LA  - en
ID  - SEMR_2018_15_a86
ER  - 
%0 Journal Article
%A A. M. Khludnev
%T On modeling elastic bodies with defects
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 153-166
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a86/
%G en
%F SEMR_2018_15_a86
A. M. Khludnev. On modeling elastic bodies with defects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 153-166. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a86/

[1] S. Almi, “Energy release rate and quasi-static evolution via vanishing viscosity in a fracture model depending on the crack opening”, ESAIM: COCV, 23:3 (2017), 791–826 | DOI | MR

[2] M. Bach, A.M. Khludnev, V.A. Kovtunenko, “Derivatives of the energy functional for 2D-problems with a crack under Signorini and friction conditions”, Math. Meth. Appl. Sci., 23:6 (2000), 515–534 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[3] G. Dal Maso, F. Iurlano, “Fracture models as gamma-limits of damage models”, Commun. Pure Appl. Anal., 12:4 (2013), 1657–1686 | MR

[4] R. V. Goldstein, E. I. Shifrin, P. S. Shushpannikov, “Application of invariant integrals to the problems of defect identification”, Int. J. Fracture, 147 (2007), 45–54 | DOI

[5] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000

[6] A.M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010

[7] A.M. Khludnev, G. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR

[8] A. M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83 (2013), 1493–1509 | DOI | Zbl

[9] A.M. Khludnev, “Rigidity parameter identification for thin inclusions located inside elastic bodies”, J. Opt. Theory Appl., 172:1 (2017), 281–297 | DOI | MR

[10] A.M. Khludnev, V.V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler-Bernoulli inclusions”, Math. Mech. Solids, 22:11 (2017), 2180–2195 | DOI | MR

[11] A.M. Khludnev, T. S. Popova, “On crack propagations in elastic bodies with thin inclusions”, Siberian Electronic Mathematical Reports, 14 (2017), 586–599 | MR | Zbl

[12] V. A. Kovtunenko, “Crack in a solid under Coulomb friction law”, Appl. Math., 45:4 (2000), 265–290 | DOI | MR

[13] V. A. Kovtunenko, “Invariant integrals in nonlinear problem for a crack with possible contact between crack faces”, J. Appl. Math. Mechs., 67:1 (2003), 109–123 | MR

[14] V. A. Kovtunenko, “Nonconvex problem for crack with nonpenetration”, Z. Angew. Math. Mech., 85:4 (2005), 242–251 | DOI | MR

[15] V.A. Kozlov, V.G. Maz'ya, A.B. Movchan, Asymptotic analysis of fields in a multi-structure, Oxford Math. Monogr., Oxford University Press, New York, 1999 | MR

[16] N.P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 | DOI | MR

[17] N. P. Lazarev, “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 96:4 (2016), 509–518 | DOI | MR

[18] N. P. Lazarev, E.M. Rudoy, “Shape sensitivity analysis of Timoshenko plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR

[19] G. Panasenko, Multi-scale modelling for structures and composites, Springer, New York, 2005 | MR

[20] I. M. Pasternak, “Plane problem of elasticity theory for anisotropic bodies with thin elastic inclusions”, J. Mathem. Sci., 186:1 (2012), 31–47 | DOI | MR

[21] M. Perelmuter, “Nonlocal criterion of bridged cracks growth: Weak interface”, J. Europ. Ceramic Society, 34 (2014), 2789–2798 | DOI

[22] M. Perelmuter, “Nonlocal criterion of bridged cracks growth: analytical analysis”, Acta Mechanica, 226 (2015), 397–418 | DOI | MR

[23] E.M. Rudoy, “Asymptotics of energy functional for elastic body with a crack and rigid inclusion. The plane problem”, Appl. Math. Mechs., 75:6 (2011), 731–738 | DOI | MR

[24] E.M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR

[25] V.V. Shcherbakov, “Optimal control of rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks”, J. Math. Sciences, 203:4 (2014), 591–604 | DOI | MR

[26] V.V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Industr. Math., 7:3 (2013), 435–443 | DOI | MR

[27] V. V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies”, J. Appl. Mech. Techn. Physics, 56:2 (2015), 321–329 | DOI | MR

[28] L. Vynnytska, Y. Savula, “Mathematical modeling and numerical analysis of elastic body with thin inclusion”, Comput. Mech., 50:5 (2012), 533–542 | DOI | MR