Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a86, author = {A. M. Khludnev}, title = {On modeling elastic bodies with defects}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {153--166}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a86/} }
A. M. Khludnev. On modeling elastic bodies with defects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 153-166. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a86/
[1] S. Almi, “Energy release rate and quasi-static evolution via vanishing viscosity in a fracture model depending on the crack opening”, ESAIM: COCV, 23:3 (2017), 791–826 | DOI | MR
[2] M. Bach, A.M. Khludnev, V.A. Kovtunenko, “Derivatives of the energy functional for 2D-problems with a crack under Signorini and friction conditions”, Math. Meth. Appl. Sci., 23:6 (2000), 515–534 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[3] G. Dal Maso, F. Iurlano, “Fracture models as gamma-limits of damage models”, Commun. Pure Appl. Anal., 12:4 (2013), 1657–1686 | MR
[4] R. V. Goldstein, E. I. Shifrin, P. S. Shushpannikov, “Application of invariant integrals to the problems of defect identification”, Int. J. Fracture, 147 (2007), 45–54 | DOI
[5] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000
[6] A.M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010
[7] A.M. Khludnev, G. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR
[8] A. M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83 (2013), 1493–1509 | DOI | Zbl
[9] A.M. Khludnev, “Rigidity parameter identification for thin inclusions located inside elastic bodies”, J. Opt. Theory Appl., 172:1 (2017), 281–297 | DOI | MR
[10] A.M. Khludnev, V.V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler-Bernoulli inclusions”, Math. Mech. Solids, 22:11 (2017), 2180–2195 | DOI | MR
[11] A.M. Khludnev, T. S. Popova, “On crack propagations in elastic bodies with thin inclusions”, Siberian Electronic Mathematical Reports, 14 (2017), 586–599 | MR | Zbl
[12] V. A. Kovtunenko, “Crack in a solid under Coulomb friction law”, Appl. Math., 45:4 (2000), 265–290 | DOI | MR
[13] V. A. Kovtunenko, “Invariant integrals in nonlinear problem for a crack with possible contact between crack faces”, J. Appl. Math. Mechs., 67:1 (2003), 109–123 | MR
[14] V. A. Kovtunenko, “Nonconvex problem for crack with nonpenetration”, Z. Angew. Math. Mech., 85:4 (2005), 242–251 | DOI | MR
[15] V.A. Kozlov, V.G. Maz'ya, A.B. Movchan, Asymptotic analysis of fields in a multi-structure, Oxford Math. Monogr., Oxford University Press, New York, 1999 | MR
[16] N.P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 | DOI | MR
[17] N. P. Lazarev, “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 96:4 (2016), 509–518 | DOI | MR
[18] N. P. Lazarev, E.M. Rudoy, “Shape sensitivity analysis of Timoshenko plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR
[19] G. Panasenko, Multi-scale modelling for structures and composites, Springer, New York, 2005 | MR
[20] I. M. Pasternak, “Plane problem of elasticity theory for anisotropic bodies with thin elastic inclusions”, J. Mathem. Sci., 186:1 (2012), 31–47 | DOI | MR
[21] M. Perelmuter, “Nonlocal criterion of bridged cracks growth: Weak interface”, J. Europ. Ceramic Society, 34 (2014), 2789–2798 | DOI
[22] M. Perelmuter, “Nonlocal criterion of bridged cracks growth: analytical analysis”, Acta Mechanica, 226 (2015), 397–418 | DOI | MR
[23] E.M. Rudoy, “Asymptotics of energy functional for elastic body with a crack and rigid inclusion. The plane problem”, Appl. Math. Mechs., 75:6 (2011), 731–738 | DOI | MR
[24] E.M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR
[25] V.V. Shcherbakov, “Optimal control of rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks”, J. Math. Sciences, 203:4 (2014), 591–604 | DOI | MR
[26] V.V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Industr. Math., 7:3 (2013), 435–443 | DOI | MR
[27] V. V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies”, J. Appl. Mech. Techn. Physics, 56:2 (2015), 321–329 | DOI | MR
[28] L. Vynnytska, Y. Savula, “Mathematical modeling and numerical analysis of elastic body with thin inclusion”, Comput. Mech., 50:5 (2012), 533–542 | DOI | MR