Inverse problem of chemical kinetics as a composition of binary correspondences
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 48-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Binary correspondences are employed for formalization of the notion of problem, definition of the basic components of problems, their properties, and constructions (the condition of a problem, its data and unknowns, solvability and unique solvability of a problem, inverse problem, and composition of problems). As an illustration, we consider a system of differential equations which describe a process in chemical kinetics. Within the study of the inverse problem, a criterion is established for linear independence of functions in terms of finite sets of their values.
Keywords: Differential equation, chemical kinetics, inverse problem, linear independence, binary correspondence, solvability
Mots-clés : composition.
@article{SEMR_2018_15_a85,
     author = {A. E. Gutman and L. I. Kononenko},
     title = {Inverse problem of chemical kinetics as a composition of binary correspondences},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {48--53},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a85/}
}
TY  - JOUR
AU  - A. E. Gutman
AU  - L. I. Kononenko
TI  - Inverse problem of chemical kinetics as a composition of binary correspondences
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 48
EP  - 53
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a85/
LA  - ru
ID  - SEMR_2018_15_a85
ER  - 
%0 Journal Article
%A A. E. Gutman
%A L. I. Kononenko
%T Inverse problem of chemical kinetics as a composition of binary correspondences
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 48-53
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a85/
%G ru
%F SEMR_2018_15_a85
A. E. Gutman; L. I. Kononenko. Inverse problem of chemical kinetics as a composition of binary correspondences. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 48-53. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a85/

[1] A.E. Gutman, L.I. Kononenko, “Formalization of inverse problems and its applications”, Sib. zhurn. chist. i prikl. matem., 16:1 (2017), 49–56

[2] L.I. Kononenko, “Qualitative analysis of singularly perturbed systems with one or two slow and fast variables”, Sib. Zh. Ind. Mat., 5:4 (2002), 55–62 | MR | Zbl

[3] L.I. Kononenko, “Relaxations in singularly perturbed planar systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009), 45–50 | MR | Zbl

[4] Yu.A. Mitropolsky, O.B. Lykova, Integral manifolds in nonlinear mechanics, Nauka, M., 1963 | MR

[5] A.V. Vasil'eva, V.F. Butuzov, Singularly perturbed equations in critical cases, Nauka, M., 1978 | MR

[6] V.M. Goldstein, V.A. Sobolev, Qualitative analysis of singularly perturbed systems, Sobolev Institute of Mathematics, Novosibirsk, 1988 | Zbl

[7] A.N. Tikhonov, “On independence of solutions to differential equations on a small parameter”, Matem. Sbornik, 22(64):2 (1948), 193–204 | MR | Zbl

[8] L.I. Kononenko, “Identification problem for singular systems with small parameter in chemical kinetics”, Siberian Electronic Mathematical Reports, 13 (2016), 175–180 | MR | Zbl