Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a85, author = {A. E. Gutman and L. I. Kononenko}, title = {Inverse problem of chemical kinetics as a composition of binary correspondences}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {48--53}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a85/} }
TY - JOUR AU - A. E. Gutman AU - L. I. Kononenko TI - Inverse problem of chemical kinetics as a composition of binary correspondences JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 48 EP - 53 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a85/ LA - ru ID - SEMR_2018_15_a85 ER -
A. E. Gutman; L. I. Kononenko. Inverse problem of chemical kinetics as a composition of binary correspondences. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 48-53. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a85/
[1] A.E. Gutman, L.I. Kononenko, “Formalization of inverse problems and its applications”, Sib. zhurn. chist. i prikl. matem., 16:1 (2017), 49–56
[2] L.I. Kononenko, “Qualitative analysis of singularly perturbed systems with one or two slow and fast variables”, Sib. Zh. Ind. Mat., 5:4 (2002), 55–62 | MR | Zbl
[3] L.I. Kononenko, “Relaxations in singularly perturbed planar systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009), 45–50 | MR | Zbl
[4] Yu.A. Mitropolsky, O.B. Lykova, Integral manifolds in nonlinear mechanics, Nauka, M., 1963 | MR
[5] A.V. Vasil'eva, V.F. Butuzov, Singularly perturbed equations in critical cases, Nauka, M., 1978 | MR
[6] V.M. Goldstein, V.A. Sobolev, Qualitative analysis of singularly perturbed systems, Sobolev Institute of Mathematics, Novosibirsk, 1988 | Zbl
[7] A.N. Tikhonov, “On independence of solutions to differential equations on a small parameter”, Matem. Sbornik, 22(64):2 (1948), 193–204 | MR | Zbl
[8] L.I. Kononenko, “Identification problem for singular systems with small parameter in chemical kinetics”, Siberian Electronic Mathematical Reports, 13 (2016), 175–180 | MR | Zbl