Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a83, author = {A. K. Oblaukhov}, title = {Maximal metrically regular sets}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1842--1849}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a83/} }
A. K. Oblaukhov. Maximal metrically regular sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1842-1849. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a83/
[1] A.K. Oblaukhov, “Metric complements to subspaces in the Boolean cube”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 397–403 | DOI | MR | Zbl
[2] N. Tokareva, “Duality between bent functions and affine functions”, Discrete Mathematics, 312:3 (2012), 666–670 | DOI | MR | Zbl
[3] N. Tokareva, Bent functions: results and applications to cryptography, Academic Press, 2015 | MR | Zbl
[4] O.S. Rothaus, “On “bent” functions”, Journal of Combinatorial Theory, Series A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[5] G. Cohen et al., Covering codes, North-Holland Mathematical Library, 54, North-Holland Publishing Co., Amsterdam, 1997 | MR | Zbl
[6] R.L. Graham, N. Sloane, “On the covering radius of codes”, IEEE Transactions on Information Theory, 31:3 (1985), 385–401 | DOI | MR | Zbl
[7] G. Cohen, A. Lobstein, N. Sloane, “Further results on the covering radius of codes”, IEEE Transactions on Information Theory, 32:5 (1986), 680–694 | DOI | MR | Zbl
[8] A. Neumaier, “Completely regular codes”, Discrete Mathematics, 106 (1992), 353–360 | DOI | MR | Zbl
[9] T.W. Cusick, P. Stanica, Cryptographic Boolean functions and applications, Academic Press, 2017 | MR | Zbl