Maximal metrically regular sets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1842-1849.

Voir la notice de l'article provenant de la source Math-Net.Ru

Metrically regular sets form an interesting subclass of all subsets of an arbitrary finite discrete metric space $M$. Let us denote $\widehat{S}$ the set of points which are at maximal possible distance from the subset $S$ of the space $M$. Then $S$ is called metrically regular, if the set of vectors which are at maximal possible distance from $\widehat{S}$ coincides with $S$. The problem of investigating metrically regular sets appears when studying bent functions, set of which is metrically regular in the Boolean cube with the Hamming metric. In this paper the method of obtaining metrically regular sets from an arbitrary subset of the metric space is presented. Smallest metrically regular sets in the Boolean cube are described, and it is proven that metrically regular sets of maximal cardinality in the Boolean cube have covering radius $1$ and are complements of minimal covering codes of radius $1$. Lower bound on the sum of cardinalities of a pair of metrically regular sets, each being metric complement of the other, is given.
Keywords: metrically regular set, metric complement, Boolean cube, minimal covering code, bent function.
@article{SEMR_2018_15_a83,
     author = {A. K. Oblaukhov},
     title = {Maximal metrically regular sets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1842--1849},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a83/}
}
TY  - JOUR
AU  - A. K. Oblaukhov
TI  - Maximal metrically regular sets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1842
EP  - 1849
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a83/
LA  - en
ID  - SEMR_2018_15_a83
ER  - 
%0 Journal Article
%A A. K. Oblaukhov
%T Maximal metrically regular sets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1842-1849
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a83/
%G en
%F SEMR_2018_15_a83
A. K. Oblaukhov. Maximal metrically regular sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1842-1849. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a83/

[1] A.K. Oblaukhov, “Metric complements to subspaces in the Boolean cube”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 397–403 | DOI | MR | Zbl

[2] N. Tokareva, “Duality between bent functions and affine functions”, Discrete Mathematics, 312:3 (2012), 666–670 | DOI | MR | Zbl

[3] N. Tokareva, Bent functions: results and applications to cryptography, Academic Press, 2015 | MR | Zbl

[4] O.S. Rothaus, “On “bent” functions”, Journal of Combinatorial Theory, Series A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[5] G. Cohen et al., Covering codes, North-Holland Mathematical Library, 54, North-Holland Publishing Co., Amsterdam, 1997 | MR | Zbl

[6] R.L. Graham, N. Sloane, “On the covering radius of codes”, IEEE Transactions on Information Theory, 31:3 (1985), 385–401 | DOI | MR | Zbl

[7] G. Cohen, A. Lobstein, N. Sloane, “Further results on the covering radius of codes”, IEEE Transactions on Information Theory, 32:5 (1986), 680–694 | DOI | MR | Zbl

[8] A. Neumaier, “Completely regular codes”, Discrete Mathematics, 106 (1992), 353–360 | DOI | MR | Zbl

[9] T.W. Cusick, P. Stanica, Cryptographic Boolean functions and applications, Academic Press, 2017 | MR | Zbl