Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a79, author = {H. Shabana and M. V. Volkov}, title = {Using {SAT} solvers for synchronization issues in non-deterministic automata}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1426--1442}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a79/} }
TY - JOUR AU - H. Shabana AU - M. V. Volkov TI - Using SAT solvers for synchronization issues in non-deterministic automata JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1426 EP - 1442 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a79/ LA - en ID - SEMR_2018_15_a79 ER -
H. Shabana; M. V. Volkov. Using SAT solvers for synchronization issues in non-deterministic automata. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1426-1442. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a79/
[1] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994 | MR | Zbl
[2] M. V. Volkov, “Synchronizing automata and the Černý conjecture”, Language and Automata Theory and Applications, Lect. Notes Comput. Sci., 5196, 2008, 11–27 | DOI | MR | Zbl
[3] J. Kari, M. V. Volkov, “Černý's conjecture and the Road Coloring Problem”, Handbook of Automata Theory, Chapter 15, v. I, ed. J.-É. Pin, EMS Publishing House (to appear)
[4] B. Imreh, M. Steinby, “Directable nondeterministic automata”, Acta Cybernetica, 14:1 (1999), 105–115 | MR | Zbl
[5] P. Martyugin, “A lower bound for the length of the shortest carefully synchronizing words”, Russ. Math., 54:1 (2010), 46–54 | DOI | MR | Zbl
[6] M. Ito, Algebraic Theory of Automata and Languages, World Scientific, 2004 | MR | Zbl
[7] V. D. Blondel, R. M. Jungers, A. Olshevsky, “On primitivity of sets of matrices”, Automatica J. IFAC, 61 (2015), 80–88 | DOI | MR | Zbl
[8] B. Gerencsér, V. V. Gusev, R. M. Jungers, “Primitive sets of nonnegative matrices and synchronizing automata”, SIAM J. Matrix Analysis and Applications, 39:1 (2018), 83–98 | DOI | MR | Zbl
[9] H. Don, H. Zantema, “Synchronizing non-deterministic finite automata”, J. Automata, Languages and Combinatorics, 23:4 (2018), 307–328 | DOI
[10] M. Steinby, Directable fuzzy and nondeterministic automata, 2017, arXiv: 1709.07719
[11] S. Sandberg, “Homing and synchronizing sequences”, Model-Based Testing of Reactive Systems, Lect. Notes Comput. Sci., 3472, 2005, 5–33 | DOI
[12] J.-E. Pin, “On two combinatorial problems arising from automata theory”, Ann. Discrete Math., 17 (1983), 535–548 | MR | Zbl
[13] Kibernetika, 1980, no. 2, 31–35 | DOI | MR | Zbl
[14] I. K. Rystsov, “Polynomial complete problems in automata theory”, Inf. Process. Lett., 16:3 (1983), 147–151 | DOI | MR | Zbl
[15] P. Martyugin, “Synchronization of automata with one undefined or ambiguous transition”, Implementation and Application of Automata, Lect. Notes Comput. Sci., 7381, 2012, 278–288 | DOI | MR | Zbl
[16] C. P. Gomes, H. Kautz, A. Sabharwal, B. Selman, “Satisfiability Solvers”, Handbook of Knowledge Representation, Chapter 2, Elsevier, 2008, 89–134 | DOI | Zbl
[17] J. Geldenhuys, B. van der Merwe, L. van Zijl, “Reducing nondeterministic finite automata with SAT solvers”, Finite-State Methods and Natural Language Processing, Lect. Notes Comput. Sci., 6062, 2009, 81–92 | DOI
[18] T. Jiang, B. Ravikumar, “Minimal NFA problems are hard”, Automata, Languages and Programming, Lect. Notes Comput. Sci., 510, 1991, 629–640 | DOI | MR | Zbl
[19] E. Skvortsov, E. Tipikin, “Experimental study of the shortest reset word of random automata”, Implementation and Application of Automata, Lect. Notes Comput. Sci., 6807, 2011, 290–298 | DOI | MR | Zbl
[20] C. Güniçen, E. Erdem, H. Yenigün, “Generating shortest synchronizing sequences using Answer Set Programming”, Proceedings of Answer Set Programming and Other Computing Paradigms (ASPOCP 2013), 6th International Workshop, 2013, 117–127, arXiv: 1312.6146
[21] J. Olschewski, M. Ummels, “The complexity of finding reset words in finite automata”, Mathematical Foundations of Computer Science, Lect. Notes Comput. Sci., 6281, 2010, 568–579 | DOI | MR | Zbl
[22] N. Eén, N. S{ö}rensson, “An extensible SAT-solver”, Theory and Applications of Satisfiability Testing (SAT 2003), Lect. Notes Comput. Sci., 2919, 2004, 502–518 | DOI | Zbl
[23] N. Eén, N. S{ö}rensson, The MiniSat Page, http://minisat.se
[24] D. Tabakov, M. Y. Vardi, “Experimental evaluation of classical automata constructions”, Logic for Programming, Artificial Intelligence, and Reasoning, Lect. Notes Comput. Sci., 3835, 2005, 396–411 | DOI | Zbl
[25] A. Kisielewicz, J. Kowalski, M. Szykuła, “Computing the shortest reset words of synchronizing automata”, J. Comb. Optim., 29:1 (2015), 88–124 | DOI | MR | Zbl
[26] M. Soos, CryptoMiniSat 2, http://www.msoos.org/cryptominisat2/
[27] A. Biere, “Yet another Local Search Solver and Lingeling and Friends entering the SAT Competition 2014”, Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions, University of Helsinki, 2014, 39–40
[28] M. de Bondt, H. Don, H. Zantema, “DFAs and PFAs with long shortest synchronizing word length”, Developments in Language Theory, Lect. Notes Comput. Sci., 10396, 2017, 122–133 | DOI | MR | Zbl
[29] M. de Bondt, H. Don, H. Zantema, Lower bounds for synchronizing word lengths in partial automata, 2018, arXiv: 1801.10436