All tight descriptions of $3$-paths in plane graphs with girth at least~$9$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1174-1181

Voir la notice de l'article provenant de la source Math-Net.Ru

Lebesgue (1940) proved that every plane graph with minimum degree $\delta$ at least $3$ and girth $g$ at least $5$ has a path on three vertices ($3$-path) of degree $3$ each. A description is tight if no its parameter can be strengthened, and no triplet dropped. Borodin et al. (2013) gave a tight description of $3$-paths in plane graphs with $\delta\ge3$ and $g\ge3$, and another tight description was given by Borodin, Ivanova and Kostochka in 2017. Borodin and Ivanova (2015) gave seven tight descriptions of $3$-paths when $\delta\ge3$ and $g\ge4$. Furthermore, they proved that this set of tight descriptions is complete, which was a result of a new type in the structural theory of plane graphs. Also, they characterized (2018) all one-term tight descriptions if $\delta\ge3$ and $g\ge3$. The problem of producing all tight descriptions for $g\ge3$ remains widely open even for $\delta\ge3$. Recently, several tight descriptions of $3$-paths were obtained for plane graphs with $\delta=2$ and $g\ge4$ by Jendrol', Maceková, Montassier, and Soták, four of which descriptions are for $g\ge9$. In this paper, we prove ten new tight descriptions of $3$-paths for $\delta=2$ and $g\ge9$ and show that no other tight descriptions exist.
Keywords: plane graph, structure properties, tight description, $3$-path, minimum degree, girth.
@article{SEMR_2018_15_a74,
     author = {V. A. Aksenov and O. V. Borodin and A. O. Ivanova},
     title = {All tight descriptions of $3$-paths in plane graphs with girth at least~$9$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1174--1181},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a74/}
}
TY  - JOUR
AU  - V. A. Aksenov
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - All tight descriptions of $3$-paths in plane graphs with girth at least~$9$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1174
EP  - 1181
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a74/
LA  - en
ID  - SEMR_2018_15_a74
ER  - 
%0 Journal Article
%A V. A. Aksenov
%A O. V. Borodin
%A A. O. Ivanova
%T All tight descriptions of $3$-paths in plane graphs with girth at least~$9$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1174-1181
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a74/
%G en
%F SEMR_2018_15_a74
V. A. Aksenov; O. V. Borodin; A. O. Ivanova. All tight descriptions of $3$-paths in plane graphs with girth at least~$9$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1174-1181. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a74/