Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a74, author = {V. A. Aksenov and O. V. Borodin and A. O. Ivanova}, title = {All tight descriptions of $3$-paths in plane graphs with girth at least~$9$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1174--1181}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a74/} }
TY - JOUR AU - V. A. Aksenov AU - O. V. Borodin AU - A. O. Ivanova TI - All tight descriptions of $3$-paths in plane graphs with girth at least~$9$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1174 EP - 1181 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a74/ LA - en ID - SEMR_2018_15_a74 ER -
%0 Journal Article %A V. A. Aksenov %A O. V. Borodin %A A. O. Ivanova %T All tight descriptions of $3$-paths in plane graphs with girth at least~$9$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1174-1181 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a74/ %G en %F SEMR_2018_15_a74
V. A. Aksenov; O. V. Borodin; A. O. Ivanova. All tight descriptions of $3$-paths in plane graphs with girth at least~$9$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1174-1181. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a74/
[1] V.A. Aksenov, Borodin O.V., A.O. Ivanova, “Weight of $3$-paths in sparse plane graphs”, Electronic J. Combin., 22:3 (2015), #P3.28 http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p28 | MR | Zbl
[2] K. Ando, S. Iwasaki, A. Kaneko, “Every $3$-connected planar graph has a connected subgraph with small degree sum”, Annual Meeting of Mathematical Society of Japan (1993) (in Japanese)
[3] O.V. Borodin, “On the total coloring of planar graphs”, J. Reine Angew. Math., 394 (1989), 180–185 | MR | Zbl
[4] O.V. Borodin, “Joint extension of two Kotzig's theorems on $3$-polytopes”, Combinatorica, 13:1 (1993), 121–125 | DOI | MR | Zbl
[5] O.V. Borodin, “Precise lower bounds for the number of edges of minor weight in planar maps”, Mathematica Slovaca, 42:2 (1992), 129–142 | MR | Zbl
[6] O.V. Borodin, “Minimal vertex degree sum of a 3-path in plane maps”, Discuss. Math. Graph Theory, 17:2 (1997), 279–284 | DOI | MR | Zbl
[7] O.V. Borodin, A.O. Ivanova, “Describing tight descriptions of $3$-paths in triangle-free normal plane maps”, Discrete Math., 338:11 (2015), 1947–1952 | DOI | MR | Zbl
[8] O.V. Borodin, A.O. Ivanova, “New results about the structure of plane graphs: a survey”, AIP Conference Proceedings, 1907, 2017, 030051 | DOI | MR
[9] O.V. Borodin, A.O. Ivanova, “All one-term tight descriptions of $3$-paths in normal plane maps without $K_4-e$”, Discrete Math., 341:12 (2018), 3425–3433 | DOI | MR
[10] O.V. Borodin, A.O. Ivanova, T.R. Jensen, A.V. Kostochka, M.P. Yancey, “Describing $3$-paths in normal plane maps”, Discrete Math., 313:23 (2013), 2702–2711 | DOI | MR | Zbl
[11] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, “Tight descriptions of $3$-paths in normal plane maps”, J. Graph Theory, 85:1 (2017), 115–132 | DOI | MR | Zbl
[12] Ph. Franklin, “The four-color problem”, Amer. J. Math., 44:3 (1922), 225–236 | DOI | MR | Zbl
[13] B. Grünbaum, “New views on some old questions of combinatorial geometry”, Int. Teorie Combinatorie (Rome, 1973), v. 1, 1976, 451–468 | MR | Zbl
[14] S. Jendrol', “Paths with restricted degrees of their vertices in planar graphs”, Czechoslovak Math. J., 49(124):3 (1999), 481–490 | DOI | MR | Zbl
[15] S. Jendrol', “A structural property of convex $3$-polytopes”, Geom. Dedicata, 68:1 (1997), 91–99 | DOI | MR | Zbl
[16] S. Jendrol’, Maceková M., “Describing short paths in plane graphs of girth at least $5$”, Discrete Math., 338:2 (2015), 149–-158 | DOI | MR | Zbl
[17] S. Jendrol’, Maceková M., Montassier M., Soták R., “Optimal unavoidable sets of types of $3$-paths for planar graphs of given girth”, Discrete Math., 339:2 (2016), 780–789 | DOI | MR | Zbl
[18] S. Jendrol’, M. Maceková, M. Montassier, R. Soták, “$3$-paths in graphs with bounded average degree”, Discuss. Math. Graph Theory, 36:2 (2016), 339–353 | DOI | MR | Zbl
[19] S. Jendrol’, M. Maceková, R. Soták, “Note on $3$-paths in plane graphs of girth $4$”, Discrete Math., 338:9 (2015), 1643–1648 | DOI | MR | Zbl
[20] S. Jendrol', H.-J. Voss, “Light subgraphs of graphs embedded in the plane — a survey”, Discrete Math., 313:4 (2013), 406–421 | DOI | MR | Zbl
[21] A. Kotzig, “Contribution to the theory of Eulerian polyhedra”, Mat. Čas., 5 (1955), 101–113 (in Slovak) | MR
[22] H. Lebesgue, “Quelques conséquences simples de la formule d'Euler”, J. Math. Pures Appl., 19 (1940), 27–43 (in Franch) | MR | Zbl
[23] P. Wernicke, “Über den kartographischen Vierfarbensatz”, Math. Ann., 58 (1904), 413–426 (in German) | DOI | MR | Zbl