Counting spanning trees in cobordism of two circulant graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1145-1157

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of graphs $H_n(s_1,\dots,s_k;t_1,\dots,t_\ell)$ that is a generalisation of the family of $I$-graphs, which, in turn, includes the generalized Petersen graphs. We present an explicit formula for the number $\tau(n)$ of spanning trees in these graphs in terms of the Chebyshev polynomials and find its asymptotics. Also, we show that the number of spanning trees can be represented in the form $\tau(n)=p\,n\,a(n)^2,$ where $a(n)$ is an integer sequence and $p$ is a prescribed integer depending on the number of even elements in the sequence $s_1,\dots,s_k,t_1,\dots,t_\ell$ and the parity of $n$.
Keywords: $I$-graph, Petersen graph, spanning tree, Chebyshev polynomial, Mahler measure.
Mots-clés : circulant graph
@article{SEMR_2018_15_a73,
     author = {N. V. Abrosimov and G. A. Baigonakova and I. A. Mednykh},
     title = {Counting spanning trees in cobordism of two circulant graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1145--1157},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a73/}
}
TY  - JOUR
AU  - N. V. Abrosimov
AU  - G. A. Baigonakova
AU  - I. A. Mednykh
TI  - Counting spanning trees in cobordism of two circulant graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1145
EP  - 1157
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a73/
LA  - en
ID  - SEMR_2018_15_a73
ER  - 
%0 Journal Article
%A N. V. Abrosimov
%A G. A. Baigonakova
%A I. A. Mednykh
%T Counting spanning trees in cobordism of two circulant graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1145-1157
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a73/
%G en
%F SEMR_2018_15_a73
N. V. Abrosimov; G. A. Baigonakova; I. A. Mednykh. Counting spanning trees in cobordism of two circulant graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1145-1157. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a73/