Path partitioning planar graphs of girth 4 without adjacent short cycles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1040-1047

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is $(a,b)$-partitionable for positive intergers $a,b$ if its vertex set can be partitioned into subsets $V_1,V_2$ such that the induced subgraph $G[V_1]$ contains no path on $a+1$ vertices and the induced subgraph $G[V_2]$ contains no path on $b+1$ vertices. A graph $G$ is $\tau$-partitionable if it is $(a,b)$-partitionable for every pair $a,b$ such that $a+b$ is the number of vertices in the longest path of $G$. In 1981, Lovász and Mihók posed the following Path Partition Conjecture: every graph is $\tau$-partitionable. In 2007, we proved the conjecture for planar graphs of girth at least 5. The aim of this paper is to improve this result by showing that every triangle-free planar graph, where cycles of length 4 are not adjacent to cycles of length 4 and 5, is $\tau$-partitionable.
Keywords: graph, planar graph, girth, triangle-free graph, path partition, $\tau$-partitionable graph
Mots-clés : path partition conjecture.
@article{SEMR_2018_15_a72,
     author = {A. N. Glebov and D. Zh. Zambalayeva},
     title = {Path partitioning planar graphs of girth 4 without adjacent short cycles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1040--1047},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a72/}
}
TY  - JOUR
AU  - A. N. Glebov
AU  - D. Zh. Zambalayeva
TI  - Path partitioning planar graphs of girth 4 without adjacent short cycles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1040
EP  - 1047
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a72/
LA  - ru
ID  - SEMR_2018_15_a72
ER  - 
%0 Journal Article
%A A. N. Glebov
%A D. Zh. Zambalayeva
%T Path partitioning planar graphs of girth 4 without adjacent short cycles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1040-1047
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a72/
%G ru
%F SEMR_2018_15_a72
A. N. Glebov; D. Zh. Zambalayeva. Path partitioning planar graphs of girth 4 without adjacent short cycles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1040-1047. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a72/