Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a71, author = {A. A. Makhnev and M. S. Nirova}, title = {Inverse problems of graph theory: generalized quadrangles}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {927--934}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a71/} }
A. A. Makhnev; M. S. Nirova. Inverse problems of graph theory: generalized quadrangles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 927-934. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a71/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] A. Makhnev, M. Nirova, “On distance-regular Shilla graphs”, Mat. Zametki, 103:5 (2018), 730–748 | DOI | MR
[3] A. Makhnev, D. Paduchikh, “Invers problems in graph theory”, Trudy Inst. Math. Mechaniki, 27, no. 3, 2018, 558–571 | MR
[4] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR | Zbl
[5] M. Nirova, “On distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sibirean Electr. Math. Reports, 15 (2018), 175–185 | MR