Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a70, author = {V. A. Baransky and T. A. Senchonok}, title = {On the shortest sequences of elementary transformations in the partition lattice}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {844--852}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a70/} }
TY - JOUR AU - V. A. Baransky AU - T. A. Senchonok TI - On the shortest sequences of elementary transformations in the partition lattice JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 844 EP - 852 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a70/ LA - ru ID - SEMR_2018_15_a70 ER -
%0 Journal Article %A V. A. Baransky %A T. A. Senchonok %T On the shortest sequences of elementary transformations in the partition lattice %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 844-852 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a70/ %G ru %F SEMR_2018_15_a70
V. A. Baransky; T. A. Senchonok. On the shortest sequences of elementary transformations in the partition lattice. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 844-852. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a70/
[1] M.O. Asanov, V.A. Baransky, V.V. Rasin, Diskretnaya matematika: grafy, matroidy, algoritmy, Lan', SPb, 2010 (In Russian)
[2] G.E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1976 | MR
[3] V.A. Baransky, T.A. Koroleva, “The lattice of partitions of a positive integer”, Doklady Math., 77:1 (2008), 72–75 | DOI | MR | Zbl
[4] V.A. Baransky, T.A. Koroleva, T.A. Senchonok, “O reshetke razbieniy natural'nogo chisla”, Trudy Instituta matematiki i mehaniki UrO PAN, 21, no. 3, 2015, 30–36 (In Russian) | MR
[5] V.A. Baransky, T.A. Koroleva, T.A. Senchonok, “On the partition lattice of all integers”, Siberian Electronic Mathematical Reports, 13 (2016), 744–753 | MR | Zbl
[6] T. Brylawski, “The lattice of integer partitions”, Discrete Math, 6 (1973), 210–219 | MR