Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 603-611

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime orders automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a distance-regular graph with intersection array $\{289,216,1;1, 72,289\}$. Let nonsolvable automorphism group $G$ acts transitively on the vertex set of distance-regular graph $\Gamma$ with intersection array $\{289,216,1;1, 72,289\}$, $\bar T$ be a socle of $\bar G=G/S(G)$. Then either $\bar T\cong L_2(289)$ and $\Gamma$ is the Mathon graph or $\bar T\cong A_{29}$.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2018_15_a67,
     author = {A. A. Makhnev and M. P. Golubyatnikov},
     title = {Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {603--611},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a67/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. P. Golubyatnikov
TI  - Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 603
EP  - 611
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a67/
LA  - ru
ID  - SEMR_2018_15_a67
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. P. Golubyatnikov
%T Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 603-611
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a67/
%G ru
%F SEMR_2018_15_a67
A. A. Makhnev; M. P. Golubyatnikov. Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 603-611. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a67/