Partial covering arrays for data hiding and quantization
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 561-569.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding a set (partial covering array) $S$ of vertices of the Boolean $n$-cube having cardinality $2^{n-k}$ and intersecting with maximum number of $k$-dimensional faces. We prove that the ratio between the numbers of the $k$-faces containing elements of $S$ to $k$-faces is less than $1-{\frac{1+o(1)}{2^{ k+1}}}$ as $n\rightarrow\infty$. The solution of the problem in the class of linear codes is found. Connections between this problem, cryptography and an efficiency of quantization are discussed.
Keywords: linear code, covering array, data hiding, wiretap channel, wet paper stegoscheme.
Mots-clés : quantization
@article{SEMR_2018_15_a66,
     author = {Vladimir N. Potapov},
     title = {Partial covering arrays for data hiding and quantization},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {561--569},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a66/}
}
TY  - JOUR
AU  - Vladimir N. Potapov
TI  - Partial covering arrays for data hiding and quantization
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 561
EP  - 569
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a66/
LA  - en
ID  - SEMR_2018_15_a66
ER  - 
%0 Journal Article
%A Vladimir N. Potapov
%T Partial covering arrays for data hiding and quantization
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 561-569
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a66/
%G en
%F SEMR_2018_15_a66
Vladimir N. Potapov. Partial covering arrays for data hiding and quantization. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 561-569. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a66/

[1] A. Filippov, V. Rufitskiy, V. Potapov, “Scalar-quantization-based multi-layer data hiding for video coding applications”, Visual Communications and Image Processing Conference (2014), IEEE, 262–265 | DOI

[2] A. Hartman, L. Raskin, “Problems and algorithms for covering arrays”, Discrete Math., 284:1–3 (2004), 149–156 | DOI | MR | Zbl

[3] J. Lawrence, R.N. Kacker, Y. Lei, D.R. Kuhn, M. Forbes, “A survey of binary covering arrays”, Electronic J. of Combinatorics, 18:1 (2011), P84 | MR | Zbl

[4] F.J. MacWilliams, N.J.A. Sloane, The theory of error-correcting codes, North-Holland, 1977 | MR | Zbl

[5] C. Munuera, “Hamming codes for wet paper steganography”, Des. Codes Cryptogr., 76:1 (2015), 101–111 | DOI | MR | Zbl

[6] L.H. Ozarow, A.D. Wyner, “Wire-tap channel II”, Advances in cryptology, Lecture Notes in Computer Science, 209, 1985, 33–50 | DOI | MR | Zbl

[7] K. Sarkar, C. J. Colbourn, A. de Bonis, U. Vaccaro, “Partial Covering Arrays: Algorithms and Asymptotics”, Lecture Notes in Computer Science, 9843, 2016, 437–448 | DOI | MR | Zbl

[8] M. Wu, H. Yu, B. Liu, “Data hiding in image and video: part II — design and applications”, IEEE Trans. Image Processing, 12:6 (2003), 696–705 | DOI

[9] Z. Zhuang, B. Dai, Y. Luo, A.J. Han Vinck, “On the relative profiles of a linear code and a subcode”, Des. Codes Cryptogr., 72:2 (2014), 219–247 | DOI | MR | Zbl