On the minimum supports of some eigenfunctions in the Doob graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 258-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the minimum size of the support of an eigenfunction in the Doob graph $D(m,n)$ corresponding to the second largest eigenvalue is $6 \cdot 4^{2m+n-2}$, and obtain characterisation of all eigenfunctions with minimum support. Similar results, with the minimum support size $2^{2m+n}$, are obtained for the minimum eigenvalue of $D(m,n)$.
Keywords: eigenfunction, minimum support, Doob graph.
@article{SEMR_2018_15_a64,
     author = {E. A. Bespalov},
     title = {On the minimum supports of some eigenfunctions in the {Doob} graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {258--266},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a64/}
}
TY  - JOUR
AU  - E. A. Bespalov
TI  - On the minimum supports of some eigenfunctions in the Doob graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 258
EP  - 266
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a64/
LA  - en
ID  - SEMR_2018_15_a64
ER  - 
%0 Journal Article
%A E. A. Bespalov
%T On the minimum supports of some eigenfunctions in the Doob graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 258-266
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a64/
%G en
%F SEMR_2018_15_a64
E. A. Bespalov. On the minimum supports of some eigenfunctions in the Doob graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 258-266. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a64/

[1] D. S. Krotov, “Traids in the combinatorial configurations”, XII International Seminar «Discrete Mathematics and its Applications» (Moscow, 20–25 June 2016), 84–96 (in Russian)

[2] Discretn. Anal. Issled. Oper., 21:6 (2014), 3–10 | DOI | MR

[3] A. Valyuzhenich, “Minimum supports of eigenfunctions of Hamming graphs”, Discrete Mathematics, 340:5 (2017), 1064–1068 | DOI | MR

[4] K. Vorob'ev, I. Mogilnych, A. Valyuzhenich, Minimum supports of eigenfunctions of Johnson graphs, arXiv: 1706.03987v1

[5] D. S. Krotov, “Perfect codes in Doob graphs”, Designs, Codes and Cryptography, 80:1 (2016), 91–102 | DOI | MR

[6] H. Koolen, A. Munemasa, “Tight 2-designs and perfect 1-codes in Doob graphs”, J. Stat. Plann. Inference, 86:2 (2000), 505–513 | DOI | MR

[7] D. S. Krotov, E. A. Bespalov, Distance-2 MDS codes and latin colorings in the Doob graphs, 2015, arXiv: 1510.01429 | MR

[8] E. A. Bespalov, D. S. Krotov, “MDS codes in Doob graphs”, Problems of Information Transmission, 53:2 (2017), 136–154 | DOI | MR

[9] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Universitext, Springer-Verlag, New York, 2012 | DOI | MR

[10] D. M. Cvetkovich, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, Academic Press Inc., New York–San Francisco–London, 1980 | MR

[11] A. E. Brouwer, A. M. Cohen, A. Neumaier, Dictance-Regular Graphs, Springer-Verlag, Berlin, 1989 | DOI | MR

[12] S. Goryainov, V. Kabanov, L. Shalaginov, A. Valyuzhenich, On eigenfunctions and maximal cliques of Paley graphs of square order, arXiv: 1801.00438

[13] E. V. Sotnikova, “Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs”, Siberian Electronic Mathematical Reports, 15 (2018), 258–266