On the minimum supports of some eigenfunctions in the Doob graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 258-266

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the minimum size of the support of an eigenfunction in the Doob graph $D(m,n)$ corresponding to the second largest eigenvalue is $6 \cdot 4^{2m+n-2}$, and obtain characterisation of all eigenfunctions with minimum support. Similar results, with the minimum support size $2^{2m+n}$, are obtained for the minimum eigenvalue of $D(m,n)$.
Keywords: eigenfunction, minimum support, Doob graph.
@article{SEMR_2018_15_a64,
     author = {E. A. Bespalov},
     title = {On the minimum supports of some eigenfunctions in the {Doob} graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {258--266},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a64/}
}
TY  - JOUR
AU  - E. A. Bespalov
TI  - On the minimum supports of some eigenfunctions in the Doob graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 258
EP  - 266
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a64/
LA  - en
ID  - SEMR_2018_15_a64
ER  - 
%0 Journal Article
%A E. A. Bespalov
%T On the minimum supports of some eigenfunctions in the Doob graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 258-266
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a64/
%G en
%F SEMR_2018_15_a64
E. A. Bespalov. On the minimum supports of some eigenfunctions in the Doob graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 258-266. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a64/