Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 223-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we focus on cubical distance-regular graphs and for 10 of them we find eigenfunctions with the minimum number of nonzero positions and provide the classification of their possible structures.
Keywords: eigenfunctions, minimum supports, distance-regular graphs, cubical graphs.
@article{SEMR_2018_15_a63,
     author = {E. V. Sotnikova},
     title = {Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {223--245},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a63/}
}
TY  - JOUR
AU  - E. V. Sotnikova
TI  - Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 223
EP  - 245
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a63/
LA  - en
ID  - SEMR_2018_15_a63
ER  - 
%0 Journal Article
%A E. V. Sotnikova
%T Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 223-245
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a63/
%G en
%F SEMR_2018_15_a63
E. V. Sotnikova. Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 223-245. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a63/

[1] N.L. Biggs, A.G. Boshier, J. Shawe-Taylor, “Cubic distance-regular graphs”, J. London Math. Soc., 33:2 (1986), 385–394 | DOI | MR

[2] P.M. Weichsel, “The Kronecker product of graphs”, Proceedings of the American Mathematical Society, 13:1 (1962), 47–52 | DOI | MR

[3] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991 | MR

[4] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of graphs, Cambridge University Press, Cambridge, 1997 | MR

[5] W. Imrich, T. Pisanski, “Multiple Kronecker covering graphs”, European Journal of Combinatorics, 29:5 (2008), 1116–1122 | DOI | MR

[6] V.N. Potapov, “On perfect 2-colorings of the $q$-ary $n$-cube”, Discrete Math., 312:6 (2012), 1269–1272 | DOI | MR

[7] Diskretn. Anal. Issled. Oper., 21:6 (2014), 3–10 | DOI | MR | MR

[8] D.S. Krotov, I.Yu. Mogilnykh, V.N. Potapov, “To the theory of $q$-ary Steiner and other-type trades”, Discrete Math., 339:3 (2016), 1150–1157 | DOI | MR

[9] A.A. Valyuzhenich, “Minimum supports of eigenfunctions of Hamming graphs”, Discrete Math., 340:5 (2017), 1064–1068 | DOI | MR

[10] K. Vorob'ev, I. Mogilnykh, A. Valyuzhenich, “Minimum supports of eigenfunctions of Johnson graphs”, Discrete Mathematics (to appear)

[11] http://www.graphclasses.org/smallgraphs.html