Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a63, author = {E. V. Sotnikova}, title = {Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {223--245}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a63/} }
TY - JOUR AU - E. V. Sotnikova TI - Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 223 EP - 245 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a63/ LA - en ID - SEMR_2018_15_a63 ER -
E. V. Sotnikova. Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 223-245. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a63/
[1] N.L. Biggs, A.G. Boshier, J. Shawe-Taylor, “Cubic distance-regular graphs”, J. London Math. Soc., 33:2 (1986), 385–394 | DOI | MR
[2] P.M. Weichsel, “The Kronecker product of graphs”, Proceedings of the American Mathematical Society, 13:1 (1962), 47–52 | DOI | MR
[3] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991 | MR
[4] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of graphs, Cambridge University Press, Cambridge, 1997 | MR
[5] W. Imrich, T. Pisanski, “Multiple Kronecker covering graphs”, European Journal of Combinatorics, 29:5 (2008), 1116–1122 | DOI | MR
[6] V.N. Potapov, “On perfect 2-colorings of the $q$-ary $n$-cube”, Discrete Math., 312:6 (2012), 1269–1272 | DOI | MR
[7] Diskretn. Anal. Issled. Oper., 21:6 (2014), 3–10 | DOI | MR | MR
[8] D.S. Krotov, I.Yu. Mogilnykh, V.N. Potapov, “To the theory of $q$-ary Steiner and other-type trades”, Discrete Math., 339:3 (2016), 1150–1157 | DOI | MR
[9] A.A. Valyuzhenich, “Minimum supports of eigenfunctions of Hamming graphs”, Discrete Math., 340:5 (2017), 1064–1068 | DOI | MR
[10] K. Vorob'ev, I. Mogilnykh, A. Valyuzhenich, “Minimum supports of eigenfunctions of Johnson graphs”, Discrete Mathematics (to appear)