Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a60, author = {M. S. Nirova}, title = {On distance-regular graph $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {175--185}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a60/} }
TY - JOUR AU - M. S. Nirova TI - On distance-regular graph $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 175 EP - 185 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a60/ LA - ru ID - SEMR_2018_15_a60 ER -
M. S. Nirova. On distance-regular graph $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 175-185. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a60/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR
[2] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR
[3] J. Degraer, Isomorph-free exhaustive generation algorithms for assocition chemes, PHD, Univ. Gent, Gent, 2007
[4] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR
[5] J.H. Koolen, J. Park, H. Yu, “An inequality involving the second largest and smallest eigenvalue of a distance-regular graph”, Linear Algebra and its Applications, 434:12 (2011), 2404–2412 | DOI | MR