On distance-regular graph $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 175-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is investigated distance-regular graphs $\Gamma$ of diameter 3 with strongly regular graphs $\Gamma_2$ and $\Gamma_3$. If $\Gamma$ is antipodal graph then either $\Gamma$ is Taylor graph without triangles or $\bar \Gamma_2$ is pseudo-geometric graph for $GQ(r-1,c_2+1)$. If $\Gamma$ is primitive graph then $\Gamma$ has intersection array $\{r(c_2+1)+a_3,rc_2,a_3+1;1,c_2,r(c_2+1)\}$. Last result gives intersection arrays in the case when $\Gamma_3$ is strongly regular graph without triangles. If $\mu(\Gamma_3)\le 11$, then $\Gamma$ has intersection array $\{14,10,3;1,5,12\}$, $\{119,100,15;1,20,105\}$ or $\{(r+5)((r+3)^2-3)/6,r(r+3)(r+8)/6,r+6;1,(r+3)(r+8)/6,r(r+5)(r+6)/6\}$, $r=4,6,10,16,19,24,28,40,46,52,58,60,70,79$.
Keywords: distance-regular graph, graph with strongly regular $\Gamma_2$ and $\Gamma_3$.
@article{SEMR_2018_15_a60,
     author = {M. S. Nirova},
     title = {On distance-regular graph $\Gamma$ with strongly regular graphs  $\Gamma_2$ and $\Gamma_3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {175--185},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a60/}
}
TY  - JOUR
AU  - M. S. Nirova
TI  - On distance-regular graph $\Gamma$ with strongly regular graphs  $\Gamma_2$ and $\Gamma_3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 175
EP  - 185
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a60/
LA  - ru
ID  - SEMR_2018_15_a60
ER  - 
%0 Journal Article
%A M. S. Nirova
%T On distance-regular graph $\Gamma$ with strongly regular graphs  $\Gamma_2$ and $\Gamma_3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 175-185
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a60/
%G ru
%F SEMR_2018_15_a60
M. S. Nirova. On distance-regular graph $\Gamma$ with strongly regular graphs  $\Gamma_2$ and $\Gamma_3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 175-185. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a60/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR

[2] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR

[3] J. Degraer, Isomorph-free exhaustive generation algorithms for assocition chemes, PHD, Univ. Gent, Gent, 2007

[4] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR

[5] J.H. Koolen, J. Park, H. Yu, “An inequality involving the second largest and smallest eigenvalue of a distance-regular graph”, Linear Algebra and its Applications, 434:12 (2011), 2404–2412 | DOI | MR