Small vertex-symmetric Higman graphs with $\mu=6$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 54-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Strongly regular graph with $v={m\choose 2}$ and $k=2(m-2)$ is called Higman graph. In Higman graphs the parameter $\mu$ takes values $4, 6, 7$ and $8$. Previously the authors found edge-symmetric Higman graphs. It is realized the programm classification of vertex-symmetric Higman graphs. In this work we study the vertex-symmetric Higman graphs with $\mu=6$ and $m=9,17$.
Keywords: graph, fixed-point subgraph.
Mots-clés : automorphism
@article{SEMR_2018_15_a58,
     author = {N. D. Zyulyarkina and A. A. Makhnev},
     title = {Small vertex-symmetric   {Higman} graphs  with $\mu=6$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {54--59},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a58/}
}
TY  - JOUR
AU  - N. D. Zyulyarkina
AU  - A. A. Makhnev
TI  - Small vertex-symmetric   Higman graphs  with $\mu=6$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 54
EP  - 59
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a58/
LA  - ru
ID  - SEMR_2018_15_a58
ER  - 
%0 Journal Article
%A N. D. Zyulyarkina
%A A. A. Makhnev
%T Small vertex-symmetric   Higman graphs  with $\mu=6$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 54-59
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a58/
%G ru
%F SEMR_2018_15_a58
N. D. Zyulyarkina; A. A. Makhnev. Small vertex-symmetric   Higman graphs  with $\mu=6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 54-59. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a58/

[1] D.G. Higman, “Characterization of families of rank 3 permutation groups by the subdegrees. I”, Arch. Math., 21 (1970), 151–156 | MR

[2] N.D. Zyulyarkina, A.A. Makhnev, “Automorphisms of semitriangular graphs with $\mu=6$”, Trudy Inst. Mat. i Mech. UrO RAN, 20, no. 2, 2014, 184–209 | MR

[3] P. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999 | MR

[4] M. Behbahani, C. Lam, “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | MR

[5] A.E. Brouwer, W.H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | MR

[6] M. Macay, J. Siran, “Search for properties of the missing Moore graph”, Linear Algebra and its Appl., 432 (2009), 2381–2398 | MR

[7] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR