Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a58, author = {N. D. Zyulyarkina and A. A. Makhnev}, title = {Small vertex-symmetric {Higman} graphs with $\mu=6$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {54--59}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a58/} }
N. D. Zyulyarkina; A. A. Makhnev. Small vertex-symmetric Higman graphs with $\mu=6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 54-59. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a58/
[1] D.G. Higman, “Characterization of families of rank 3 permutation groups by the subdegrees. I”, Arch. Math., 21 (1970), 151–156 | MR
[2] N.D. Zyulyarkina, A.A. Makhnev, “Automorphisms of semitriangular graphs with $\mu=6$”, Trudy Inst. Mat. i Mech. UrO RAN, 20, no. 2, 2014, 184–209 | MR
[3] P. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999 | MR
[4] M. Behbahani, C. Lam, “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | MR
[5] A.E. Brouwer, W.H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | MR
[6] M. Macay, J. Siran, “Search for properties of the missing Moore graph”, Linear Algebra and its Appl., 432 (2009), 2381–2398 | MR
[7] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR