On the rational cohomology ring of a certain $G_2$-manifold
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1605-1620.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the rational cohomology ring of a certain $G_2$-manifold constructed by Joyce.
Keywords: $G_2$-manifold, cohomology ring, intersection theory.
@article{SEMR_2018_15_a55,
     author = {I. V. Fedorov},
     title = {On the rational cohomology ring of a certain $G_2$-manifold},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1605--1620},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/}
}
TY  - JOUR
AU  - I. V. Fedorov
TI  - On the rational cohomology ring of a certain $G_2$-manifold
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1605
EP  - 1620
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/
LA  - ru
ID  - SEMR_2018_15_a55
ER  - 
%0 Journal Article
%A I. V. Fedorov
%T On the rational cohomology ring of a certain $G_2$-manifold
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1605-1620
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/
%G ru
%F SEMR_2018_15_a55
I. V. Fedorov. On the rational cohomology ring of a certain $G_2$-manifold. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1605-1620. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/

[1] D. Joyce, “Compact Riemannian 7-manifolds with holonomy $G_2$. I”, J. Differential Geom., 43 (1996), 291–328 | DOI | MR | Zbl

[2] D. Joyce, “Compact Riemannian 7-manifolds with holonomy $G_2$. II”, J. Differential Geom., 43 (1996), 329–375 | DOI | MR | Zbl

[3] I. A. Taimanov, “The generalized Kummer construction and cohomology rings of $G_2$-manifolds”, Sb. Math., 209:12 (2018) | DOI | MR

[4] I. A. Taimanov, “A canonical basis of two-cycles on a K3 surface”, Sb. Math., 209:8 (2018), 1248–1256 | DOI | MR

[5] A. Kovalev, “Twisted connected sums and special Riemannian holonomy”, J. Reine Angew. Math., 565 (2003), 125–160 | MR | Zbl

[6] A. Kovalev, N. Lee, “K3 surfaces with non-symplectic involution and compact irreducible $G_2$-manifolds”, Math. Proc. Cambridge Philos. Soc., 151 (2011), 193–218 | DOI | MR | Zbl

[7] A. Corti, M. Haskins, J. Nordström, T. Pacini, “$G_2$-manifolds and associative submanifolds via semi-Fano 3-folds”, Duke Math. J., 164 (2015), 1971–2092 | DOI | MR | Zbl

[8] M. Glezerman, L. Pontryagin, Intersections in manifolds, Amer. Math. Soc. Translations, 50, 1951, 149 pp. | MR