On the rational cohomology ring of a certain $G_2$-manifold
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1605-1620

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the rational cohomology ring of a certain $G_2$-manifold constructed by Joyce.
Keywords: $G_2$-manifold, cohomology ring, intersection theory.
@article{SEMR_2018_15_a55,
     author = {I. V. Fedorov},
     title = {On the rational cohomology ring of a certain $G_2$-manifold},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1605--1620},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/}
}
TY  - JOUR
AU  - I. V. Fedorov
TI  - On the rational cohomology ring of a certain $G_2$-manifold
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1605
EP  - 1620
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/
LA  - ru
ID  - SEMR_2018_15_a55
ER  - 
%0 Journal Article
%A I. V. Fedorov
%T On the rational cohomology ring of a certain $G_2$-manifold
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1605-1620
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/
%G ru
%F SEMR_2018_15_a55
I. V. Fedorov. On the rational cohomology ring of a certain $G_2$-manifold. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1605-1620. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/