Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a55, author = {I. V. Fedorov}, title = {On the rational cohomology ring of a certain $G_2$-manifold}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1605--1620}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/} }
I. V. Fedorov. On the rational cohomology ring of a certain $G_2$-manifold. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1605-1620. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a55/
[1] D. Joyce, “Compact Riemannian 7-manifolds with holonomy $G_2$. I”, J. Differential Geom., 43 (1996), 291–328 | DOI | MR | Zbl
[2] D. Joyce, “Compact Riemannian 7-manifolds with holonomy $G_2$. II”, J. Differential Geom., 43 (1996), 329–375 | DOI | MR | Zbl
[3] I. A. Taimanov, “The generalized Kummer construction and cohomology rings of $G_2$-manifolds”, Sb. Math., 209:12 (2018) | DOI | MR
[4] I. A. Taimanov, “A canonical basis of two-cycles on a K3 surface”, Sb. Math., 209:8 (2018), 1248–1256 | DOI | MR
[5] A. Kovalev, “Twisted connected sums and special Riemannian holonomy”, J. Reine Angew. Math., 565 (2003), 125–160 | MR | Zbl
[6] A. Kovalev, N. Lee, “K3 surfaces with non-symplectic involution and compact irreducible $G_2$-manifolds”, Math. Proc. Cambridge Philos. Soc., 151 (2011), 193–218 | DOI | MR | Zbl
[7] A. Corti, M. Haskins, J. Nordström, T. Pacini, “$G_2$-manifolds and associative submanifolds via semi-Fano 3-folds”, Duke Math. J., 164 (2015), 1971–2092 | DOI | MR | Zbl
[8] M. Glezerman, L. Pontryagin, Intersections in manifolds, Amer. Math. Soc. Translations, 50, 1951, 149 pp. | MR