On resolvability of Lindel\"of generated spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1260-1270.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the properties of $\mathscr{P}$ generated spaces (by analogy with compactly generated). We prove that a regular Lindelöf generated space with uncountable dispersion character is resolvable. It is proved that Hausdorff hereditarily $L$-spaces are $L$-tight spaces which were defined by István Juhász, Jan van Mill in (Variations on countable tightness, arXiv:1702.03714v1). We also prove $\omega$-resolvability of regular $L$-tight space with uncountable dispersion character.
Keywords: resolvable space, $k$-space, tightness, $\omega$-resolvable space, Lindelöf generated space, $\mathscr{P}$ generated space, $\mathscr{P}$-tightness.
@article{SEMR_2018_15_a53,
     author = {M. A. Filatova and A. V. Osipov},
     title = {On resolvability of {Lindel\"of} generated spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1260--1270},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a53/}
}
TY  - JOUR
AU  - M. A. Filatova
AU  - A. V. Osipov
TI  - On resolvability of Lindel\"of generated spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1260
EP  - 1270
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a53/
LA  - en
ID  - SEMR_2018_15_a53
ER  - 
%0 Journal Article
%A M. A. Filatova
%A A. V. Osipov
%T On resolvability of Lindel\"of generated spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1260-1270
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a53/
%G en
%F SEMR_2018_15_a53
M. A. Filatova; A. V. Osipov. On resolvability of Lindel\"of generated spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1260-1270. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a53/

[1] A. V. Arhangel'skii, “A characterization of very $k$-spaces”, Czechoslovak Math. J., 18 (1968), 392–-395 | MR

[2] A. V. Arhangel'skii, D. N. Stavrova, “On a common generalization of k-spaces and spaces with countable tightness”, Topology Appl., 51:3 (1993), 261–268 | DOI | MR

[3] A. G. El'kin, “Regular maximal spaces”, Math. Notes, 27:2 (1980), 150–151 | DOI | MR | Zbl

[4] István Juhász, J. van Mill, Variations on countable tightness, 13 Feb. 2017, arXiv: 1702.03714v1 [math.GN] | MR

[5] E. Hewitt, “A problem of set-theoretic topology”, Duke Math. J., 10 (1943), 309–333 | DOI | MR | Zbl

[6] I. Juhasz, L. Soukup, Z. Szentmiklossy, “Regular spaces of small extent are $\omega$-resolvable”, Fund. Math., 228:1 (2015), 27–46 | DOI | MR | Zbl

[7] V. I. Malykhin, “Borel resolvability of compact spaces and their subspaces”, Math. Notes, 64:5 (1998), 607–615 | DOI | MR | Zbl

[8] N. V. Velichko, “Theory of resolvable spaces”, Math. Notes, 19:1 (1976), 65–68 | DOI | MR | Zbl

[9] Tr. Mat. Inst. Steklova, 154, 1983, 209–213 | MR | Zbl | Zbl

[10] R. Engelking, General Topology, 2nd ed., Heldermann Verlag, Berlin, 1989 | MR | Zbl

[11] E. A. Michael, “A quintuple quotient quest”, General Topology and Appl., 2 (1972), 91–138 | DOI | MR | Zbl

[12] A. Bella, V. I. Malykhin, “Tightness and resolvability”, Comment. Math. Univ. Carolin., 39:1 (1998), 177–184 http://dml.cz/dmlcz/118996 | MR | Zbl

[13] P. L. Sharma, S. Sharma, “Resolution property in generalized $k$-spaces”, Topology Appl., 29:1 (1988), 61–66 | DOI | MR | Zbl

[14] W. W. Comfort, L. Feng, “The union of resolvable spaces is resolvable”, Math. Japon., 38 (1993), 413–414 | MR | Zbl

[15] M. A. Filatova, “About resolvability of finally compact spaces”, Mathematicheskii i pricladnoi analis, sb. nauch. tr., TSU, Tumen, 2003, 204–212 (in Russian)