On resolvability of Lindel\"of generated spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1260-1270

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the properties of $\mathscr{P}$ generated spaces (by analogy with compactly generated). We prove that a regular Lindelöf generated space with uncountable dispersion character is resolvable. It is proved that Hausdorff hereditarily $L$-spaces are $L$-tight spaces which were defined by István Juhász, Jan van Mill in (Variations on countable tightness, arXiv:1702.03714v1). We also prove $\omega$-resolvability of regular $L$-tight space with uncountable dispersion character.
Keywords: resolvable space, $k$-space, tightness, $\omega$-resolvable space, Lindelöf generated space, $\mathscr{P}$ generated space, $\mathscr{P}$-tightness.
@article{SEMR_2018_15_a53,
     author = {M. A. Filatova and A. V. Osipov},
     title = {On resolvability of {Lindel\"of} generated spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1260--1270},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a53/}
}
TY  - JOUR
AU  - M. A. Filatova
AU  - A. V. Osipov
TI  - On resolvability of Lindel\"of generated spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1260
EP  - 1270
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a53/
LA  - en
ID  - SEMR_2018_15_a53
ER  - 
%0 Journal Article
%A M. A. Filatova
%A A. V. Osipov
%T On resolvability of Lindel\"of generated spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1260-1270
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a53/
%G en
%F SEMR_2018_15_a53
M. A. Filatova; A. V. Osipov. On resolvability of Lindel\"of generated spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1260-1270. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a53/