Classification of low complexity knotoids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1237-1244.

Voir la notice de l'article provenant de la source Math-Net.Ru

As the main result of the paper we present the complete classification of all prime knotoids with positive height and at most 5 crossings. We prove that there exist exactly 31 knotoids of this type. The proof is based on the complete table of knots in the thickened torus and the correspondence between knotoids in the two dimensional sphere and knots in the thickened torus.
Mots-clés : knotoid, classification, table.
Keywords: crossing number, height of knotoid
@article{SEMR_2018_15_a52,
     author = {Ph. G. Korablev and Y. K. May and V. V. Tarkaev},
     title = {Classification of low complexity knotoids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1237--1244},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a52/}
}
TY  - JOUR
AU  - Ph. G. Korablev
AU  - Y. K. May
AU  - V. V. Tarkaev
TI  - Classification of low complexity knotoids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1237
EP  - 1244
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a52/
LA  - ru
ID  - SEMR_2018_15_a52
ER  - 
%0 Journal Article
%A Ph. G. Korablev
%A Y. K. May
%A V. V. Tarkaev
%T Classification of low complexity knotoids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1237-1244
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a52/
%G ru
%F SEMR_2018_15_a52
Ph. G. Korablev; Y. K. May; V. V. Tarkaev. Classification of low complexity knotoids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1237-1244. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a52/

[1] V. Turaev, “Knotoids”, Osaka Journal of Mathematics, 49:1 (2012), 195–223 | MR | Zbl

[2] A. Bartholomew, Knotoids, (data obrascheniya: 02.07.2018) http://www.layer8.co.uk/maths/knotoids/index.htm

[3] Ph.G. Korablev, Y.K. May, “Knotoids and knots in the thickened torus”, Siberian Mathematical Journal, 58:5 (2017), 837–844 | DOI | MR | Zbl

[4] N. Gugumcu, L.H. Kauffman, “New Invariants of Knotoids”, European Journal of Combinatorics, 65 (2017), 186–229 | DOI | MR | Zbl

[5] H.A. Dye, L.H. Kauffman, “Minimal Surface Representation of Virtual Knots and Links”, Algebraic Geometric Topology, 5 (2005), 509-–535 | DOI | MR | Zbl

[6] A.A. Akimova, S.V. Matveev, “Classification of Genus 1 Virtual Knots Having at Most 5 Classical Crossings”, Journal of Knot Theory and Its Ramifications, 23:6 (2014), 1450031 | DOI | MR | Zbl