Rigidity of powers and Kosniowski's conjecture
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1227-1236

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we state some problems on rigidity of powers in terms of complex analysis and number-theoretic abstraction, which has a strong topological background for the rigid Hirzebruch genera and Kosniowski's conjecture of unitary circle actions. However, our statements of these problems are elementary enough and do not require any knowledge of algebraic topology. We shall give the solutions of these problems for some particular cases. As a consequence, we obtain that Kosniowski's conjecture holds in the case of dimension $\leq 10$ or equal to $14$.
Keywords: Rigidity of powers, circle action, fixed points, Kosniowski's conjecture
Mots-clés : multiplicative genus.
@article{SEMR_2018_15_a51,
     author = {Z. L\"u and O. R. Musin},
     title = {Rigidity of powers and {Kosniowski's} conjecture},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1227--1236},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a51/}
}
TY  - JOUR
AU  - Z. Lü
AU  - O. R. Musin
TI  - Rigidity of powers and Kosniowski's conjecture
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1227
EP  - 1236
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a51/
LA  - en
ID  - SEMR_2018_15_a51
ER  - 
%0 Journal Article
%A Z. Lü
%A O. R. Musin
%T Rigidity of powers and Kosniowski's conjecture
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1227-1236
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a51/
%G en
%F SEMR_2018_15_a51
Z. Lü; O. R. Musin. Rigidity of powers and Kosniowski's conjecture. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1227-1236. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a51/