Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a51, author = {Z. L\"u and O. R. Musin}, title = {Rigidity of powers and {Kosniowski's} conjecture}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1227--1236}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a51/} }
Z. Lü; O. R. Musin. Rigidity of powers and Kosniowski's conjecture. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1227-1236. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a51/
[1] C. Allday, V. Puppe, Cohomological Methods in Transformation Groups, Cambridge Studies in Advanced Mathematics, 32, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[2] M. F. Atiyah, F. Hirzebruch, “Spin manifolds and group actions”, Essays in Topology and Related Subjects, Springer-Verlag, Berlin, 1970, 18–28 | DOI | MR
[3] M. F. Atiyah, I. M. Singer, “The index theory of elliptic operators: III”, Ann. of Math., 87 (1968), 546–604 | DOI | MR | Zbl
[4] G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press, New York–London, 1972 | MR | Zbl
[5] R. Bott, “Vector fields and characteristic numbers”, Michigan Math. J., 14 (1967), 231–244 | DOI | MR | Zbl
[6] V. Buchstaber, T. Panov, Toric Topology, Mathematical Surveys and Monographs, 204, AMS, Providence, RI, 2015 | DOI | MR | Zbl
[7] V. Buchstaber, T. Panov, N. Ray, “Toric genera”, Internat. Math. Research Notices, 16 (2010), 3207–3262 | MR | Zbl
[8] V. M. Buchstaber, N. Ray, “The universal equivariant genus and Krichever's formula”, Russian Math. Surveys, 62:1 (2007), 178–180 | DOI | MR | Zbl
[9] V. Guillemin, V. Ginzburg, Y. Karshon, Moment Maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monographs, 98, American Mathematical Society, Providence, RI, 2002 | DOI | MR | Zbl
[10] F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren der mathematischen Wissenschaften, 131, 3rd edition, Springer, Berlin–Heidelberg, 1966 | MR | Zbl
[11] Donghoon Jang, “Circle actions on almost complex manifolds with isolated fixed points”, J. Geom. Phys., 119 (2017), 187–192 | DOI | MR | Zbl
[12] C. Kosniowski, “Some formulae and conjectures associated with circle actions”, Proc. Sympos. (Univ. Siegen, Siegen, 1979), Lecture Notes in Math., 788, Springer, Berlin, 1980, 331–339 | DOI | MR
[13] I. M. Krichever, “Formal groups and the Atiyah–Hirzebruch formula”, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 1289–1304 | MR
[14] Ping Li, Kefeng Liu, “Some remarks on circle action on manifolds”, Mathematical Research Letters, 18:3 (2011), 437–446 | DOI | MR | Zbl
[15] Z. Lü, “Equivariant cobordism of unitary toric manifolds”, Conference V. Buchstaber–70 “Algebraic topology and Abelian functions” (18–22 June 2013, Moscow), 53–54
[16] Z. Lü, Q. B. Tan, “Equivariant Chern numbers and the number of fixed points for unitary torus manifolds”, Math. Res. Lett., 18:6 (2011), 1319–1325 | DOI | MR | Zbl
[17] Z. Lü, “Equivariant bordism of 2-torus manifolds and unitary toric manifolds: a survey”, Proceedings of the Sixth International Congress of Chinese Mathematicians, v. II, Adv. Lect. Math. (ALM), 37, Int. Press, Somerville, MA, 2017, 267–284 | MR | Zbl
[18] J. Milnor, “On the cobordism ring $\Omega_*$ and a complex analogue”, I. Amer. J. Math., 82 (1960), 505–521 | DOI | MR | Zbl
[19] O. R. Musin, “Circle actions with two fixed points”, Math. Notes, 100:3–4 (2016), 636–638 | DOI | MR | Zbl
[20] O. R. Musin, “On rigid Hirzebruch genera”, Mosc. Math. J., 11:1 (2011), 139–147 | MR | Zbl
[21] O. R. Musin, “Circle action on homotopy complex projective spaces”, Math. Notes, 28:1 (1980), 533–540 | DOI | MR
[22] S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Soviet Math. Dokl., 1 (1960), 717–720 | MR
[23] A. Pelayo, S. Tolman, “Fixed points of symplectic periodic flows”, Ergodic Theory and Dynamical Systems, 31:4 (2011), 1237–1247 | DOI | MR | Zbl