Singular 6-dimensional superalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 92-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple right alternative superalgebra is called singular if its even part is an algebra with zero multiplication. The first example of a 5-dimensional (this is the smallest possible dimension) singular superalgebra was given by J.P. da Silva, L.S.I. Murakami and I.P. Shestakov in 2016. In the previous paper we classified singular 5-dimensional superalgebras. It is proved that there are no 6-dimensional singular superalgebras.
Keywords: simple right alternative superalgebra, singular superalgebra.
@article{SEMR_2018_15_a5,
     author = {S. V. Pchelintsev and O. V. Shashkov},
     title = {Singular 6-dimensional superalgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {92--105},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a5/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - O. V. Shashkov
TI  - Singular 6-dimensional superalgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 92
EP  - 105
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a5/
LA  - ru
ID  - SEMR_2018_15_a5
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A O. V. Shashkov
%T Singular 6-dimensional superalgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 92-105
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a5/
%G ru
%F SEMR_2018_15_a5
S. V. Pchelintsev; O. V. Shashkov. Singular 6-dimensional superalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 92-105. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a5/

[1] A.A. Albert, “The structure of right alternative algebras”, Ann. of Math., 59:3 (1949), 408–417 | DOI | MR

[2] I.M. Mikheev, “On simple right alternative rings”, Algebra i Logika, 16:6 (1977), 682–710 | DOI | MR

[3] V.G. Skosyrskii, “Right alternative algebras”, Algebra i Logika, 23:2 (1984), 185–192 | DOI | MR

[4] V.T. Filippov, V. K. Kharchenko, I. P. Shestakov, Dniester notebook: unsolved problems in the theory of rings and modules, Inst. Math. SO RAN, Novosibirsk, 1993 | MR | Zbl

[5] J.P. Silva, L.S.I. Murakami, I.P. Shestakov, “On right alternative syperalgebras”, Comm. in Algebra, 44:1 (2016), 240–252 | DOI | MR

[6] S.V. Pchelintsev, O.V. Shashkov, “Simple finite-dimensional right-alternative superalgebras of Abelian type of characteristic zero”, Izvestiya: Mathematics, 79:3 (2015), 554–580 | DOI | MR

[7] S.V. Pchelintsev, O.V. Shashkov, “Simple finite-dimensional right alternative superalgebras with unitary even part over a field of characteristic 0”, Math. Notes, 100:4 (2016), 589–596 | DOI | MR

[8] S.V. Pchelintsev, O.V. Shashkov, “Simple right alternative superalgebras of Abelian type whose even part is a field”, Izv. Math., 80:6 (2016), 1231–1241 | DOI | MR

[9] S.V. Pchelintsev, O.V. Shashkov, “Simple finite-dimensional right-alternative superalgebras with semisimple strongly associative even part”, Sb. Math., 208:2 (2017), 223–236 | DOI | MR

[10] S.V. Pchelintsev, O.V. Shashkov, “Simple finite-dimensional right-alternative unital superalgebras with strongly associative even part”, Sb. Math., 208:4 (2017), 531–545 | DOI | MR

[11] S.V. Pchelintsev, O.V. Shashkov, “Simple finite-dimensional right-alternative unital superalgebras with an associative-commutative even part over a field of characteristic zero”, Izv. Math. (to appear) | MR

[12] S.V. Pchelintsev, O.V. Shashkov, “Simple right alternative 5-dimensional superalgebras with a trivial even part”, Sib. Math. Journal, 58:6 (2017), 1387–1400 | DOI | MR