Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 773-785

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the work is the local classification of three-dimensional homogeneous spaces, admits invariant affine connections nonzero curvature only, description of the connections on those spaces together with their curvature and torsion tensors, holonomy algebras. We have concerned the case of the unsolvable Lie group of transformations. The local classification of homogeneous spaces is equivalent to the description of the effective pairs of Lie algebras. Studies are based on the use of properties of the Lie algebras, Lie groups and homogeneous spaces and they mainly have local character.
Keywords: affine connection, homogeneous space, curvature tensor.
Mots-clés : transformation group
@article{SEMR_2018_15_a46,
     author = {N. P. Mozhey},
     title = {Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {773--785},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/}
}
TY  - JOUR
AU  - N. P. Mozhey
TI  - Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 773
EP  - 785
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/
LA  - ru
ID  - SEMR_2018_15_a46
ER  - 
%0 Journal Article
%A N. P. Mozhey
%T Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 773-785
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/
%G ru
%F SEMR_2018_15_a46
N. P. Mozhey. Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 773-785. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/