Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 773-785.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the work is the local classification of three-dimensional homogeneous spaces, admits invariant affine connections nonzero curvature only, description of the connections on those spaces together with their curvature and torsion tensors, holonomy algebras. We have concerned the case of the unsolvable Lie group of transformations. The local classification of homogeneous spaces is equivalent to the description of the effective pairs of Lie algebras. Studies are based on the use of properties of the Lie algebras, Lie groups and homogeneous spaces and they mainly have local character.
Keywords: affine connection, homogeneous space, curvature tensor.
Mots-clés : transformation group
@article{SEMR_2018_15_a46,
     author = {N. P. Mozhey},
     title = {Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {773--785},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/}
}
TY  - JOUR
AU  - N. P. Mozhey
TI  - Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 773
EP  - 785
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/
LA  - ru
ID  - SEMR_2018_15_a46
ER  - 
%0 Journal Article
%A N. P. Mozhey
%T Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 773-785
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/
%G ru
%F SEMR_2018_15_a46
N. P. Mozhey. Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 773-785. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/

[1] S. Lie, “Theorie der Transformationsgruppen. III. Bestimmung aller Gruppen einer zweifach ausgedehnten Punktmannigfaltigkeit”, Arch. for Math., Kristiania, 3 (1878), 93–165

[2] V. V. Gorbatsevich, A. L. Onishchik, “Lie groups of transformations”, Results of science and technology, 20, VINITI AS USSR, M., 1988, 103-–240 | MR

[3] D. V. Alekseyevskiy, A. M. Vinogradov, V. V. Lychagin, “Basic ideas and concepts of differential geometry”, Results of science and technology, 28, VINITI AS USSR, M., 1988, 5-–297 | MR | Zbl

[4] P. K. Rashevskii, “On the geometry of homogeneous spaces”, Dokl. Akad. Nauk, SSSR (N. S.), 80 (1951), 169–171 | MR | Zbl

[5] P. K. Rashevskii, “On the geometry of homogeneous spaces”, Trudy Sem. Vektor Tenzor Analiz., 9, 1952, 49–74 | MR | Zbl

[6] M. Kurita, “On the vector in homogeneous spaces”, Nagoya Math. J., 5 (1953), 1–33 | DOI | MR | Zbl

[7] E. B. Vinberg, “On invariant linear connections”, Dokl. Akad. Nauk, SSSR, 128 (1959), 653–654 | MR | Zbl

[8] E. B. Vinberg, “Invariant linear connections in a homogeneous space”, Trudy Moscow Mat. Obsc., 9, 1960, 191–210 | MR | Zbl

[9] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, John Wiley and Sons, New York, 1963 ; v. 2, 1969 | MR | Zbl | MR

[10] K. Nomizu, “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl

[11] B. Dubrov, B. Komrakov, Y. Tchempkovsky, Invariant affine connections on three-dimensional homogeneous spaces, Preprint series: Pure mathematics, No 6, 1996

[12] A. Z. Petrov, New methods in the general theory of relativity, Nauka, M., 1966 | MR

[13] N. P. Mozhey, “Invariant affine connections on three-dimensional homogeneous spaces with non-solvable transformation group”, Lobachevskii Journal of Mathematics., 35 (2014), 218–240 | DOI | MR | Zbl

[14] A.L. Onischik, Topology tranzitive Lie groups of transformations, Phiz.-math. lit., M., 1995

[15] N. P. Mozhey, Three-dimensional isotropy-faithful homogeneous spaces and connections on them, Izd-vo Kazan. un-ta, Kazan', 2015