Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a46, author = {N. P. Mozhey}, title = {Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {773--785}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/} }
TY - JOUR AU - N. P. Mozhey TI - Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 773 EP - 785 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/ LA - ru ID - SEMR_2018_15_a46 ER -
N. P. Mozhey. Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 773-785. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a46/
[1] S. Lie, “Theorie der Transformationsgruppen. III. Bestimmung aller Gruppen einer zweifach ausgedehnten Punktmannigfaltigkeit”, Arch. for Math., Kristiania, 3 (1878), 93–165
[2] V. V. Gorbatsevich, A. L. Onishchik, “Lie groups of transformations”, Results of science and technology, 20, VINITI AS USSR, M., 1988, 103-–240 | MR
[3] D. V. Alekseyevskiy, A. M. Vinogradov, V. V. Lychagin, “Basic ideas and concepts of differential geometry”, Results of science and technology, 28, VINITI AS USSR, M., 1988, 5-–297 | MR | Zbl
[4] P. K. Rashevskii, “On the geometry of homogeneous spaces”, Dokl. Akad. Nauk, SSSR (N. S.), 80 (1951), 169–171 | MR | Zbl
[5] P. K. Rashevskii, “On the geometry of homogeneous spaces”, Trudy Sem. Vektor Tenzor Analiz., 9, 1952, 49–74 | MR | Zbl
[6] M. Kurita, “On the vector in homogeneous spaces”, Nagoya Math. J., 5 (1953), 1–33 | DOI | MR | Zbl
[7] E. B. Vinberg, “On invariant linear connections”, Dokl. Akad. Nauk, SSSR, 128 (1959), 653–654 | MR | Zbl
[8] E. B. Vinberg, “Invariant linear connections in a homogeneous space”, Trudy Moscow Mat. Obsc., 9, 1960, 191–210 | MR | Zbl
[9] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, John Wiley and Sons, New York, 1963 ; v. 2, 1969 | MR | Zbl | MR
[10] K. Nomizu, “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl
[11] B. Dubrov, B. Komrakov, Y. Tchempkovsky, Invariant affine connections on three-dimensional homogeneous spaces, Preprint series: Pure mathematics, No 6, 1996
[12] A. Z. Petrov, New methods in the general theory of relativity, Nauka, M., 1966 | MR
[13] N. P. Mozhey, “Invariant affine connections on three-dimensional homogeneous spaces with non-solvable transformation group”, Lobachevskii Journal of Mathematics., 35 (2014), 218–240 | DOI | MR | Zbl
[14] A.L. Onischik, Topology tranzitive Lie groups of transformations, Phiz.-math. lit., M., 1995
[15] N. P. Mozhey, Three-dimensional isotropy-faithful homogeneous spaces and connections on them, Izd-vo Kazan. un-ta, Kazan', 2015