The analytical method for embedding multidimensional
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 741-758.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is known, the geometry of the local maximum mobility is an $n$-dimensional pseudo-Euclidean geometry. In this paper, we find all the $(n+1)$-dimensional geometries of the local maximal mobility whose metric functions contain the metric function of pseudo-Euclidean geometry as an argument. Such geometries are: $(n+1)$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional special extension of $n$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional geometry of constant curvature on a pseudo sphere.
Keywords: pseudo-Euclidean geometry, functional equation, differential equation, metric function.
@article{SEMR_2018_15_a45,
     author = {V. A. Kyrov},
     title = {The analytical method for embedding multidimensional},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {741--758},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - The analytical method for embedding multidimensional
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 741
EP  - 758
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/
LA  - ru
ID  - SEMR_2018_15_a45
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T The analytical method for embedding multidimensional
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 741-758
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/
%G ru
%F SEMR_2018_15_a45
V. A. Kyrov. The analytical method for embedding multidimensional. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 741-758. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/

[1] G.G. Mikhailichenko, “On group and phenomenological symmetry in geometry”, Siberian Mathematical Journal, 25:5 (1984), 99–113 | MR | Zbl

[2] G.G. Mikhailichenko, The mathematical basics and results of the theory of physical structures, 2012, arXiv: 1602.02795

[3] G.G. Mikhailichenko, “Two-dimensional geometry”, Soviet Math. Doklady, 24:2 (1981), 346–348 | MR | Zbl

[4] V.H. Lev, “Three-dimensional geometries in the theory of physical structures”, Vychisl. Sistemy, 125 (1988), 90–103 (in Russian) | MR | Zbl

[5] V.A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Sib. Zn. Ind. Mat, 13:4 (2010), 38–51 (in Russian) | MR | Zbl

[6] V.A. Kyrov, G.G. Mikhailichenko, “An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 2, 2017, 167–181 (in Russian) | MR

[7] V.A. Kyrov, G.G. Mikhailichenko, “The analytic method of embedding symplectic geometry”, Siberian Electronic Mathematical Reports, 14 (2017), 657–672 (in Russian) | DOI | MR | Zbl

[8] V.A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 26:3 (2016), 312–323 (in Russian) | DOI | MR | Zbl

[9] V.A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,M)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,M)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:1 (2017), 42–53 (in Russian) | DOI | MR | Zbl

[10] V.A. Kyrov, The geometry of Helmgolz, Lambert Academic Publishing, Saarbrucken, 2011

[11] L.V. Ovsyannikov, A group analysis of differential equation, Nauka, M., 1978 | MR

[12] G.M. Fichtengolz, A course of differential and integral calculus, v. 2, Phismhatgis, M., 1963 | MR

[13] V. Dyakonov, Maple 10/11/12/13/14 in mathematical calculations, DMS, M., 2014

[14] L.E. Elsgoltz, Differential equations and calculus of variations, Nauka, M., 1969 | MR