Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a45, author = {V. A. Kyrov}, title = {The analytical method for embedding multidimensional}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {741--758}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/} }
V. A. Kyrov. The analytical method for embedding multidimensional. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 741-758. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/
[1] G.G. Mikhailichenko, “On group and phenomenological symmetry in geometry”, Siberian Mathematical Journal, 25:5 (1984), 99–113 | MR | Zbl
[2] G.G. Mikhailichenko, The mathematical basics and results of the theory of physical structures, 2012, arXiv: 1602.02795
[3] G.G. Mikhailichenko, “Two-dimensional geometry”, Soviet Math. Doklady, 24:2 (1981), 346–348 | MR | Zbl
[4] V.H. Lev, “Three-dimensional geometries in the theory of physical structures”, Vychisl. Sistemy, 125 (1988), 90–103 (in Russian) | MR | Zbl
[5] V.A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Sib. Zn. Ind. Mat, 13:4 (2010), 38–51 (in Russian) | MR | Zbl
[6] V.A. Kyrov, G.G. Mikhailichenko, “An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 2, 2017, 167–181 (in Russian) | MR
[7] V.A. Kyrov, G.G. Mikhailichenko, “The analytic method of embedding symplectic geometry”, Siberian Electronic Mathematical Reports, 14 (2017), 657–672 (in Russian) | DOI | MR | Zbl
[8] V.A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 26:3 (2016), 312–323 (in Russian) | DOI | MR | Zbl
[9] V.A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,M)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,M)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:1 (2017), 42–53 (in Russian) | DOI | MR | Zbl
[10] V.A. Kyrov, The geometry of Helmgolz, Lambert Academic Publishing, Saarbrucken, 2011
[11] L.V. Ovsyannikov, A group analysis of differential equation, Nauka, M., 1978 | MR
[12] G.M. Fichtengolz, A course of differential and integral calculus, v. 2, Phismhatgis, M., 1963 | MR
[13] V. Dyakonov, Maple 10/11/12/13/14 in mathematical calculations, DMS, M., 2014
[14] L.E. Elsgoltz, Differential equations and calculus of variations, Nauka, M., 1969 | MR