The analytical method for embedding multidimensional
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 741-758

Voir la notice de l'article provenant de la source Math-Net.Ru

As is known, the geometry of the local maximum mobility is an $n$-dimensional pseudo-Euclidean geometry. In this paper, we find all the $(n+1)$-dimensional geometries of the local maximal mobility whose metric functions contain the metric function of pseudo-Euclidean geometry as an argument. Such geometries are: $(n+1)$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional special extension of $n$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional geometry of constant curvature on a pseudo sphere.
Keywords: pseudo-Euclidean geometry, functional equation, differential equation, metric function.
@article{SEMR_2018_15_a45,
     author = {V. A. Kyrov},
     title = {The analytical method for embedding multidimensional},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {741--758},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - The analytical method for embedding multidimensional
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 741
EP  - 758
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/
LA  - ru
ID  - SEMR_2018_15_a45
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T The analytical method for embedding multidimensional
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 741-758
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/
%G ru
%F SEMR_2018_15_a45
V. A. Kyrov. The analytical method for embedding multidimensional. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 741-758. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a45/