On piecewise continuous mappings of paracompact spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 214-222

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every resolvably measurable mapping $f \colon X \rightarrow Y$ of a first-countable perfectly paracompact space $X$ to a regular space $Y$ is piecewise continuous. If $X$ is additionally completely Baire, then $f$ is resolvably measurable if and only if it is piecewise continuous.
Keywords: resolvably measurable mapping, piecewise continuous mapping, $\mathcal{F}_\sigma$-measurable mapping, completely Baire space.
@article{SEMR_2018_15_a43,
     author = {S. V. Medvedev},
     title = {On piecewise continuous mappings of paracompact spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {214--222},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a43/}
}
TY  - JOUR
AU  - S. V. Medvedev
TI  - On piecewise continuous mappings of paracompact spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 214
EP  - 222
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a43/
LA  - en
ID  - SEMR_2018_15_a43
ER  - 
%0 Journal Article
%A S. V. Medvedev
%T On piecewise continuous mappings of paracompact spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 214-222
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a43/
%G en
%F SEMR_2018_15_a43
S. V. Medvedev. On piecewise continuous mappings of paracompact spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 214-222. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a43/