On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1530-1552.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently E. Gine, V. Koltchinskii and L. Sakhanenko (Ann. Probab., 2004) investigated necessary and sufficient conditions for weak convergence to the double exponential distribution of a normalized random variable $ \sup\nolimits_{t \in \mathbb{R}} \left | \psi(t) (f_n(t) - \mathbf{E} f_n (t)) \right | $ with some weight function $\psi(t)$, where $f_n$ is a kernel density estimator. The proof of their results consists of a large number of technically difficult stages and uses more than fifteen bulky assumptions. In this work we prove that sufficiency of convergence can be obtained under simpler and wider assumptions.
Keywords: kernel density estimators, brownian motion, function of bounded variation.
@article{SEMR_2018_15_a40,
     author = {A. S. Kartashov and A. I. Sakhanenko},
     title = {On sufficient conditions  for a {Gaussian} approximation of kernel estimates  for distribution densities},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1530--1552},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a40/}
}
TY  - JOUR
AU  - A. S. Kartashov
AU  - A. I. Sakhanenko
TI  - On sufficient conditions  for a Gaussian approximation of kernel estimates  for distribution densities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1530
EP  - 1552
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a40/
LA  - en
ID  - SEMR_2018_15_a40
ER  - 
%0 Journal Article
%A A. S. Kartashov
%A A. I. Sakhanenko
%T On sufficient conditions  for a Gaussian approximation of kernel estimates  for distribution densities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1530-1552
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a40/
%G en
%F SEMR_2018_15_a40
A. S. Kartashov; A. I. Sakhanenko. On sufficient conditions  for a Gaussian approximation of kernel estimates  for distribution densities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1530-1552. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a40/

[1] E. Gine, V. Koltchinskii, L. Sakhanenko, “Kernel density estimators: convergence in distribution for weighted sup-norms”, Probability Theory and Related Fields, 130:2 (2004), 167–198 | DOI | MR

[2] E. Gine, V. Koltchinskii, J. Zinn, “Weighted uniform consistency of kernel density estimators”, Annals of Probability, 32:3B (2004), 2570–2605 | MR

[3] L. Sakhanenko, “Asymptotics of suprema of weighed Gaussian fields with applications to kernel density estimators”, Theory of Probability and its Applications, 59:3 (2015), 499–541 | DOI | MR

[4] A. S. Kartashov, A. I. Sakhanenko, “About conditions of gaussian approximation of kernel estimates for distribution density”, Siberian Electronic Mathematical Reports, 12 (2015), 766–776 | MR

[5] W. Stute, “The oscillation behavior of empirical processes”, The Annals of Probability, 10:1 (1982), 86–107 | DOI | MR

[6] E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics, 508\, Springer, Berlin–New York, 1976 | DOI | MR

[7] W. Hoeffding, “Probability Inequalities for Sums of Bounded Random Variables”, Journal of the American Statistical Association, 58:301 (1963), 13–30 | DOI | MR

[8] I. F. Pinelis, A. I. Sakhanenko, “Remarks on Inequalities for Large Deviation Probabilities”, Theory of Probability and its Applications, 30:1 (1986), 127–131 | DOI | MR