Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a40, author = {A. S. Kartashov and A. I. Sakhanenko}, title = {On sufficient conditions for a {Gaussian} approximation of kernel estimates for distribution densities}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1530--1552}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a40/} }
TY - JOUR AU - A. S. Kartashov AU - A. I. Sakhanenko TI - On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1530 EP - 1552 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a40/ LA - en ID - SEMR_2018_15_a40 ER -
%0 Journal Article %A A. S. Kartashov %A A. I. Sakhanenko %T On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1530-1552 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a40/ %G en %F SEMR_2018_15_a40
A. S. Kartashov; A. I. Sakhanenko. On sufficient conditions for a Gaussian approximation of kernel estimates for distribution densities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1530-1552. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a40/
[1] E. Gine, V. Koltchinskii, L. Sakhanenko, “Kernel density estimators: convergence in distribution for weighted sup-norms”, Probability Theory and Related Fields, 130:2 (2004), 167–198 | DOI | MR
[2] E. Gine, V. Koltchinskii, J. Zinn, “Weighted uniform consistency of kernel density estimators”, Annals of Probability, 32:3B (2004), 2570–2605 | MR
[3] L. Sakhanenko, “Asymptotics of suprema of weighed Gaussian fields with applications to kernel density estimators”, Theory of Probability and its Applications, 59:3 (2015), 499–541 | DOI | MR
[4] A. S. Kartashov, A. I. Sakhanenko, “About conditions of gaussian approximation of kernel estimates for distribution density”, Siberian Electronic Mathematical Reports, 12 (2015), 766–776 | MR
[5] W. Stute, “The oscillation behavior of empirical processes”, The Annals of Probability, 10:1 (1982), 86–107 | DOI | MR
[6] E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics, 508\, Springer, Berlin–New York, 1976 | DOI | MR
[7] W. Hoeffding, “Probability Inequalities for Sums of Bounded Random Variables”, Journal of the American Statistical Association, 58:301 (1963), 13–30 | DOI | MR
[8] I. F. Pinelis, A. I. Sakhanenko, “Remarks on Inequalities for Large Deviation Probabilities”, Theory of Probability and its Applications, 30:1 (1986), 127–131 | DOI | MR