On a random walk with switchings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1320-1331.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the Laplace-Stieltjes transform of the stationary distribution of a random walk in which the distribution of jumps changes when the strip boundaries are alternately reached. We use known results for regenerative processes and factorization technique for the study in boundary crossing problems for random walks.
Keywords: oscillating random walk, regenerative process, stationary distribution, factorization method.
@article{SEMR_2018_15_a39,
     author = {V. I. Lotov},
     title = {On a random walk with switchings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1320--1331},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a39/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - On a random walk with switchings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1320
EP  - 1331
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a39/
LA  - ru
ID  - SEMR_2018_15_a39
ER  - 
%0 Journal Article
%A V. I. Lotov
%T On a random walk with switchings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1320-1331
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a39/
%G ru
%F SEMR_2018_15_a39
V. I. Lotov. On a random walk with switchings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1320-1331. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a39/

[1] J.H.B. Kemperman, “The oscillating random walk”, Stoch. Proc. Appl., 2 (1974), 1–30 | DOI | MR

[2] B.A. Rogozin and S. G. Foss, “Recurrency of an oscillating random walk”, Theory Probab. Appl., 23:1 (1978), 155–162 | DOI | MR | Zbl

[3] J. Keilson, L.D. Servi, “Oscillating random walk models for GI/G/I vacation systems with Bernoulli schedules”, J. Appl. Probab., 23:3 (1986), 790–802 | DOI | MR | Zbl

[4] N.S. Bratiichuk, D.V. Gusak, “Ergodic distribution of an oscillating process with independent increments”, Ukrainian Math. J., 38:5 (1986), 465–471 | DOI | MR

[5] Yu.V. Prokhorov, “Controlling the Wiener process with a bounded number of switches”, Trudy Mat. Inst. Steklov., 71, 1964, 82–87 | MR | Zbl

[6] D.V. Gusak, “On oscillating schemes of a random walk. I”, Teor. Veroyatnost. Mat. Statist., 39 (1988), 33–39 | MR | Zbl

[7] D.V. Gusak, “On oscillating schemes of a random walk. II”, Teor. Veroyatnost. Mat. Statist., 40 (1989), 11–17 | MR

[8] D.V. Gusak, “Oscillating processes with independent increments and nondegenerate Wiener component”, Ukrainian Math. J., 42 (1990), 1257–1261. MR1090534) | DOI | MR | Zbl

[9] V.I. Lotov, “On oscillating random walks”, Siberian Math. J., 37:4 (1996), 764–774 | DOI | MR | Zbl

[10] A.A. Borovkov, Probability Theory, Springer-Verlag, London, 2013 | MR | Zbl

[11] V.I. Lotov, “On some boundary crossing problems for Gaussian random walks”, Annals of Probab., 24:4 (1996), 2154–2171 | DOI | MR | Zbl

[12] V.I. Lotov, E.M. Okhapkina, “Stationary distribution of a stochastic process”, J. Math. Sci., 231 (2018), 218–226 | DOI

[13] A.A. Borovkov, “New limit theorems in boundary problems for sums of independent terms”, Select. Transl. Math. Statist. Probab., 5, 1965, 315–372 | Zbl

[14] V.I. Lotov, “On an approach to two-sided boundary problems”, Statistics and Control of Stochastic Processes, Nauka, M., 1989. MR1079348, 117–121 (in Russian) | MR

[15] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, John Wiley Sons, New York–London–Sydney, 1971 | MR | Zbl

[16] A.A. Borovkov, Stochastic Processes in Queueing Theory, Springer, New York–Berlin, 1976 | MR | Zbl

[17] V.I. Lotov, “Limit theorems in a boundary crossing problem for random walks”, Siberian Math. J., 40:5 (1999), 925–937 | DOI | MR | Zbl