Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a38, author = {N. S. Arkashov}, title = {The principle of invariance in the {Strassen} form to the partial sum processes of moving averages of finite order}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1292--1300}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a38/} }
TY - JOUR AU - N. S. Arkashov TI - The principle of invariance in the Strassen form to the partial sum processes of moving averages of finite order JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1292 EP - 1300 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a38/ LA - ru ID - SEMR_2018_15_a38 ER -
%0 Journal Article %A N. S. Arkashov %T The principle of invariance in the Strassen form to the partial sum processes of moving averages of finite order %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1292-1300 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a38/ %G ru %F SEMR_2018_15_a38
N. S. Arkashov. The principle of invariance in the Strassen form to the partial sum processes of moving averages of finite order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1292-1300. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a38/
[1] N. S. Arkashov, V. A. Seleznev, “Formation of a relation of nonlocalities in the anomalous diffusion model”, Theoret. and Math. Phys., 193:1 (2017), 1508–1523 | DOI | MR | Zbl
[2] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: A fractional dynamics approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl
[3] A. N. Shiryaev, Probability, Springer-Verlag, New York, 1995 | MR | Zbl
[4] A. I. Olemskoi, A. Ya. Flat, “Application of fractals in condensed-matter physics”, Phys. Usp., 36 (1993), 1087–1128 | DOI | MR
[5] R. R. Nigmatullin, “Fractional integral and its physical interpretation”, Theor. Math. Phys., 90:3 (1992), 242–251 | DOI | MR | Zbl
[6] B. Mandelbrot, J. Van Ness, “Fractional Brownian motions, fractional noise and applications”, SIAM Rev., 10 (1968), 422–437 | DOI | MR | Zbl
[7] N. S. Arkashov, I. S. Borisov, A. A. Mogulskii, “Large Deviation Principle for Partial Sum Processes of Moving Averages”, Theory Probab. Appl., 52:2 (2008), 181–208 | DOI | MR | Zbl
[8] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, John Wiley Sons, New York, 1971 | MR | Zbl
[9] T. Konstantopoulos, A. Sakhanenko, “Convergence and convergence rate to fractional Brownian motion for weighted random sums”, Sib. Elektron. Mat. Izv., 1 (2004), 47–63 | MR | Zbl