@article{SEMR_2018_15_a36,
author = {A. A. Mogulskii and E. I. Prokopenko},
title = {Integro-local theorems for multidimensional compound renewal processes, when {Cramer's} condition {holds.~II}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {503--527},
year = {2018},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/}
}
TY - JOUR AU - A. A. Mogulskii AU - E. I. Prokopenko TI - Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 503 EP - 527 VL - 15 UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/ LA - ru ID - SEMR_2018_15_a36 ER -
%0 Journal Article %A A. A. Mogulskii %A E. I. Prokopenko %T Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 503-527 %V 15 %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/ %G ru %F SEMR_2018_15_a36
A. A. Mogulskii; E. I. Prokopenko. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 503-527. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/
[1] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Siberian Electronic Mathematical Reports, 15 (2018), 475–502
[2] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Siberian Electronic Mathematical Reports, 15 (2018), 528–553
[3] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. IV Siberian Electronic”, Mathematical Reports (to appear)
[4] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in phase space”, Siberian Electronic Mathematical Reports (to appear)
[5] R. Lefevere, M. Mariani, L. Zambotti, “Large deviations for renewal processes”, Stochastic Processes and their Applications, 121:10 (2011), 2243–2271 | DOI | MR | Zbl
[6] B. Tsirelson, “From uniform renewal theorem to uniform large and moderate deviations for renewal-reward processes”, Electron. Commun. Probab., 18 (2013), 52, 13 pp. | DOI | MR | Zbl
[7] A.A. Borovkov, A.A. Mogulskii,, “Integro-local limit theorems for compound renewal processes with Cramer's condition. I”, Siberian Mathematical Journal, 59:3 (2018), 491–514
[8] A.A. Borovkov, A.A. Mogulskii,, “Integro-local limit theorems for compound renewal processes with Cramer's condition. II”, Siberian Mathematical Journal, 59:4 (2018), 731–750
[9] M.A. Evgrafov, Analytic functions, Second Edition, Nauka, M., 1968 | MR | Zbl