Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 503-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, which consists of 4 papers (the article and [1]–[3]), we obtain integro-local limit theorems in the phase space for multidimensional compound renewal processes, when Cramer's condition holds. In the part II (the article) we consider the so-called first renewal process $\mathbf{Z}(t)$ in an irregular region.
Keywords: compound multidimensional renewal process, first renewal process, large deviations, integro-local limit theorems, renewal measure, Cramer's condition, deviation (rate) function, second deviation (rate) function.
@article{SEMR_2018_15_a36,
     author = {A. A. Mogulskii and E. I. Prokopenko},
     title = {Integro-local theorems for multidimensional compound renewal processes, when {Cramer's} condition {holds.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {503--527},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/}
}
TY  - JOUR
AU  - A. A. Mogulskii
AU  - E. I. Prokopenko
TI  - Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 503
EP  - 527
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/
LA  - ru
ID  - SEMR_2018_15_a36
ER  - 
%0 Journal Article
%A A. A. Mogulskii
%A E. I. Prokopenko
%T Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 503-527
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/
%G ru
%F SEMR_2018_15_a36
A. A. Mogulskii; E. I. Prokopenko. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 503-527. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/

[1] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Siberian Electronic Mathematical Reports, 15 (2018), 475–502

[2] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Siberian Electronic Mathematical Reports, 15 (2018), 528–553

[3] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. IV Siberian Electronic”, Mathematical Reports (to appear)

[4] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in phase space”, Siberian Electronic Mathematical Reports (to appear)

[5] R. Lefevere, M. Mariani, L. Zambotti, “Large deviations for renewal processes”, Stochastic Processes and their Applications, 121:10 (2011), 2243–2271 | DOI | MR | Zbl

[6] B. Tsirelson, “From uniform renewal theorem to uniform large and moderate deviations for renewal-reward processes”, Electron. Commun. Probab., 18 (2013), 52, 13 pp. | DOI | MR | Zbl

[7] A.A. Borovkov, A.A. Mogulskii,, “Integro-local limit theorems for compound renewal processes with Cramer's condition. I”, Siberian Mathematical Journal, 59:3 (2018), 491–514

[8] A.A. Borovkov, A.A. Mogulskii,, “Integro-local limit theorems for compound renewal processes with Cramer's condition. II”, Siberian Mathematical Journal, 59:4 (2018), 731–750

[9] M.A. Evgrafov, Analytic functions, Second Edition, Nauka, M., 1968 | MR | Zbl