Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 503-527

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, which consists of 4 papers (the article and [1]–[3]), we obtain integro-local limit theorems in the phase space for multidimensional compound renewal processes, when Cramer's condition holds. In the part II (the article) we consider the so-called first renewal process $\mathbf{Z}(t)$ in an irregular region.
Keywords: compound multidimensional renewal process, first renewal process, large deviations, integro-local limit theorems, renewal measure, Cramer's condition, deviation (rate) function, second deviation (rate) function.
@article{SEMR_2018_15_a36,
     author = {A. A. Mogulskii and E. I. Prokopenko},
     title = {Integro-local theorems for multidimensional compound renewal processes, when {Cramer's} condition {holds.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {503--527},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/}
}
TY  - JOUR
AU  - A. A. Mogulskii
AU  - E. I. Prokopenko
TI  - Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 503
EP  - 527
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/
LA  - ru
ID  - SEMR_2018_15_a36
ER  - 
%0 Journal Article
%A A. A. Mogulskii
%A E. I. Prokopenko
%T Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 503-527
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/
%G ru
%F SEMR_2018_15_a36
A. A. Mogulskii; E. I. Prokopenko. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 503-527. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a36/