Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 475-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, which consists of 4 papers (the article and [15]–[17]), we obtain integro-local limit theorems in the phase space for multidimensional compound renewal processes, when Cramer's condition holds. In the part I (the article) we consider the so-called first renewal process $\mathbf{Z}(t)$ in a regular region, which is an of analog Cramer's deviation region for random walk. The regular region includes normal and moderate deviations.
Keywords: compound multidimensional renewal process, first (second) renewal process, large deviations, integro-local limit theorems, renewal measure, Cramer's condition, deviation (rate) function, second deviation (rate) function.
@article{SEMR_2018_15_a35,
     author = {A. A. Mogulskii and E. I. Prokopenko},
     title = {Integro-local theorems for multidimensional compound renewal processes, when {Cramer's} condition holds. {I}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {475--502},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a35/}
}
TY  - JOUR
AU  - A. A. Mogulskii
AU  - E. I. Prokopenko
TI  - Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 475
EP  - 502
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a35/
LA  - ru
ID  - SEMR_2018_15_a35
ER  - 
%0 Journal Article
%A A. A. Mogulskii
%A E. I. Prokopenko
%T Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 475-502
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a35/
%G ru
%F SEMR_2018_15_a35
A. A. Mogulskii; E. I. Prokopenko. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 475-502. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a35/

[1] D.P. Cox, W. L. Smith, Renewal Theory, Russian translation, Sov. Radio, M., 1967 | MR | Zbl

[2] S. Asmussen, H. Albrecher, Ruin Probabilities, Advanced Series on Statistical Science Applied Probability, 14, Second Edition, Word Scientifics, Hackensack, NJ, 2010 | DOI | MR | Zbl

[3] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. I”, Siberian Mathematical Journal, 59:3 (2018), 491–514

[4] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. II”, Siberian Mathematical Journal, 59:4 (2018), 731–750

[5] C. Stone, “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36 (1965), 546–551 | DOI | MR | Zbl

[6] C. Stone, “On local and ratio limit theorems”, Proc. Fifth Berkeley Symp. Math. Stat. Prob. II (2), ed. Neyman J., University of California Press, Berkeley, 1967, 217–1224 | MR | Zbl

[7] A.A. Borovkov, Probability Theory, Springer-Verlag, London, 2013 | MR | Zbl

[8] A.A. Borovkov, Asymptotic analysis of random walks. Rapidly decreasing distributions of increments, Fizmatlit, M., 2013 | Zbl

[9] A. A. Borovkov, “Integro-local limit theorems for compound renewal processes”, Teor. Veroyatnost. i Primenen., 62:2 (2017), 217–240 | DOI | MR

[10] A.A. Borovkov, A.A. Mogulskii, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Sib. Math. J., 56:1 (2015), 28–53 | DOI | MR | Zbl

[11] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in phase space”, Siberian Electronic Mathematical Reports (to appear)

[12] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional second compound renewal processes in phase space”, Siberian Adv. Math. (to appear)

[13] M. Herve, Several complex variables. Local Theory, Oxford University Press, Bombay, 1963 | MR | Zbl

[14] A.A. Borovkov, A.A. Mogulskii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl

[15] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for compound multidimensional renewal processes, when Cramer's condition holds. II”, Siberian Electronic Mathematical Reports, 15 (2018), 503–527

[16] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Siberian Electronic Mathematical Reports, 15 (2018), 528–553

[17] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. IV”, Siberian Electronic Mathematical Reports (to appear)

[18] G. M. Fihtengol'tz, Course of Differential and Integral Calculus, v. II, Fizmatlit, M., 2006