Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a35, author = {A. A. Mogulskii and E. I. Prokopenko}, title = {Integro-local theorems for multidimensional compound renewal processes, when {Cramer's} condition holds. {I}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {475--502}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a35/} }
TY - JOUR AU - A. A. Mogulskii AU - E. I. Prokopenko TI - Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 475 EP - 502 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a35/ LA - ru ID - SEMR_2018_15_a35 ER -
%0 Journal Article %A A. A. Mogulskii %A E. I. Prokopenko %T Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 475-502 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a35/ %G ru %F SEMR_2018_15_a35
A. A. Mogulskii; E. I. Prokopenko. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 475-502. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a35/
[1] D.P. Cox, W. L. Smith, Renewal Theory, Russian translation, Sov. Radio, M., 1967 | MR | Zbl
[2] S. Asmussen, H. Albrecher, Ruin Probabilities, Advanced Series on Statistical Science Applied Probability, 14, Second Edition, Word Scientifics, Hackensack, NJ, 2010 | DOI | MR | Zbl
[3] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. I”, Siberian Mathematical Journal, 59:3 (2018), 491–514
[4] A.A. Borovkov, A.A. Mogulskii, “Integro-local limit theorems for compound renewal processes with Cramer's condition. II”, Siberian Mathematical Journal, 59:4 (2018), 731–750
[5] C. Stone, “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36 (1965), 546–551 | DOI | MR | Zbl
[6] C. Stone, “On local and ratio limit theorems”, Proc. Fifth Berkeley Symp. Math. Stat. Prob. II (2), ed. Neyman J., University of California Press, Berkeley, 1967, 217–1224 | MR | Zbl
[7] A.A. Borovkov, Probability Theory, Springer-Verlag, London, 2013 | MR | Zbl
[8] A.A. Borovkov, Asymptotic analysis of random walks. Rapidly decreasing distributions of increments, Fizmatlit, M., 2013 | Zbl
[9] A. A. Borovkov, “Integro-local limit theorems for compound renewal processes”, Teor. Veroyatnost. i Primenen., 62:2 (2017), 217–240 | DOI | MR
[10] A.A. Borovkov, A.A. Mogulskii, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Sib. Math. J., 56:1 (2015), 28–53 | DOI | MR | Zbl
[11] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in phase space”, Siberian Electronic Mathematical Reports (to appear)
[12] A.A. Mogulskii, E.I. Prokopenko, “Large deviation principle for multidimensional second compound renewal processes in phase space”, Siberian Adv. Math. (to appear)
[13] M. Herve, Several complex variables. Local Theory, Oxford University Press, Bombay, 1963 | MR | Zbl
[14] A.A. Borovkov, A.A. Mogulskii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 | DOI | MR | Zbl
[15] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for compound multidimensional renewal processes, when Cramer's condition holds. II”, Siberian Electronic Mathematical Reports, 15 (2018), 503–527
[16] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Siberian Electronic Mathematical Reports, 15 (2018), 528–553
[17] A.A. Mogulskii, E.I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. IV”, Siberian Electronic Mathematical Reports (to appear)
[18] G. M. Fihtengol'tz, Course of Differential and Integral Calculus, v. II, Fizmatlit, M., 2006