Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a34, author = {M. G. Chebunin and E. I. Prokopenko and A. S. Tarasenko}, title = {Spatially decentralized protocols in random multiple access networks}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {135--152}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a34/} }
TY - JOUR AU - M. G. Chebunin AU - E. I. Prokopenko AU - A. S. Tarasenko TI - Spatially decentralized protocols in random multiple access networks JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 135 EP - 152 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a34/ LA - ru ID - SEMR_2018_15_a34 ER -
%0 Journal Article %A M. G. Chebunin %A E. I. Prokopenko %A A. S. Tarasenko %T Spatially decentralized protocols in random multiple access networks %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 135-152 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a34/ %G ru %F SEMR_2018_15_a34
M. G. Chebunin; E. I. Prokopenko; A. S. Tarasenko. Spatially decentralized protocols in random multiple access networks. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 135-152. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a34/
[1] C. Bordenave, S. Foss, V. Shneer, “A Random Multiple Access Protocol with Spatial Interactions”, Journal of Applied Probability, 46:3 (2009), 844–865 | DOI | MR
[2] A. A. Borovkov, Probability Theory, Universitext, Springer, London, 2013 | DOI | MR
[3] A. A. Borovkov, D. A. Korshunov, “Large-deviation probabilities for one-dimensional Markov chains. Part 1: Stationary distributions”, Theory of Probability and its Applications, 41:1 (1997), 1–24 | DOI | MR
[4] M. Bramson, Stability of queueing networks, Lecture Notes in Mathematics, 1950, Springer, Berlin, 2008 | MR
[5] J. L. Capetanakis, “Tree algorithms for packet broadcast channels”, IEEE Transactions on Information Theory, 25:5 (1979), 505–515 | DOI | MR
[6] M. G. Chebunin, “On ergodic algorithms in systems of multiple access with partial feedback”, Siberian Elektronic Mathematical Reports, 13 (2016), 762–781 | MR
[7] A. Ephremides, B. Hajek, “Information theory and communication networks: An unconsummated union”, IEEE Trans. Inform. Theory, 44:6 (1998), 2416–2434 | DOI | MR
[8] G. I. Falin, Random processes in structurally complex queueing systems, Dissertation d.f.-m.s., MSU, M., 1989 | MR
[9] G. Fayolle, E. Gelembe, J. Labetoulle, “Stability and optimal control of the packet switching broadcast channel”, J. of Assoc. Comput. Mach., 24 (1977), 375–386 | DOI | MR
[10] S. G. Foss, Stochastic recursive sequences and their applications in Queueing, Dissertation d.f.-m.s., IM SB RAS, Novosibirsk, 1992
[11] S. G. Foss, D. E. Denisov, “On transience conditions for Markov chains”, Sibirsk. Mat. Zh., 42:2 (2001), 425–433 | MR
[12] S. G. Foss, B. Hajek, A. M. Turlikov, “Doubly Randomised Protocols for a Random Multiple Access Channel with «Success-Nonsuccess» Feedback”, Problems of Information Transmission, 52:2 (2016), 61–71 | DOI | MR
[13] B. Hajek, T. van Loon, “Decentralized dynamic control of a multiaccess broadcast channel”, IEEE Trans. Automatic Control, 27:3 (1982), 559–569 | DOI | Zbl
[14] V. V. Kalashnikov, Mathematical methods in queuing theory, Kluwer Academic Publishers Group, Dordrecht, 1994 | MR
[15] V. V. Kalashnikov, “Estimates of convergence rates and stability for regeneration and renewal Markov processes”, Queueing theory, VNIISI, M., 1981, 7–12
[16] A. Malkov, A. Turlikov, “Random multiple access protocols for communication systems with «success-failure» feedback”, IEEE International Workshop on Information Theory (1995), 1–39
[17] N. Mehravari, T. Berger, “Poisson multiple-access contention with binary feedback”, IEEE Transactions on Information Theory, 30:5 (1984), 745–751 | DOI | MR
[18] S. Meyn, R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, 1993 | MR
[19] V. A. Mikhailov, “Geometrical Analysis of the Stability of Markov Chains in ${\mathbf R}^n_+$ and Its Application to Throughput Evaluation of the Adaptive Random Multiple Access Algorithm”, Problems of Information Transmission, 24:1 (1988), 47–56 | MR
[20] B. Paris, B. Aazhang, “Near-optimum control of multiple-access collision channels”, IEEE Transactions on Wireless Communications, 40 (1992), 1298–1308 | DOI | Zbl
[21] B. S. Tsybakov, A. N. Beloyarov, “Random multiple access in a channel with a binary feedback «Success-Failure»”, Problems of Information Transmission, 26:3 (1990), 67–82 | MR
[22] B. S. Tsybakov, A. N. Beloyarov, “Random multiple access in a channel with a binary feedback”, Problems of Information Transmission, 26:4 (1990), 83–97 | MR | Zbl
[23] B. S. Tsybakov, V. A. Mikhailov, “Free synchronized access in a broadcast channel with a feedback”, Problems of Information Transmission, 14:4 (1978), 32–59 | MR
[24] A. Turlikov, S. Foss, “On ergodic algorithms in random multiple access systems with «success-failure» feedback”, Problems of Information Transmission, 46:2 (2010), 184–200 | DOI | MR