@article{SEMR_2018_15_a33,
author = {F. A. Dudkin},
title = {Computation of the centralizer dimension of generalized {Baumslag{\textendash}Solitar} groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1823--1841},
year = {2018},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/}
}
F. A. Dudkin. Computation of the centralizer dimension of generalized Baumslag–Solitar groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1823-1841. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/
[1] J.P. Serre, Trees, Springer, Berlin–Heidelberg–New York, 1980 | MR | Zbl
[2] V. Guirardel, G. Levitt, JSJ decompositions of groups, Astérisque, 395, 2017 | MR | Zbl
[3] M. Clay, M. Forester, “On the isomorphism problem for generalized Baumslag-Solitar groups”, Algebraic Geometric Topology, 8 (2008), 2289–2322 | DOI | MR | Zbl
[4] D. J. S. Robinson, “Generalized Baumslag-Solitar groups: a survey of recent progress”, Groups St Andrews 2013, LMS, Lecture Note Series, 422, 2016, 457–469 | MR
[5] A. Myasnikov, P. Shumayatsky, “Discriminating groups and c-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl
[6] A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Centralizer dimension and universal classes of group”, Sib. Electron. Math. Rep., 3 (2006), 197–215 | MR | Zbl
[7] M. Forester, “Deformation and rigidity of simplicial group actions on trees”, Geometry Topology, 6 (2002), 219–267 | DOI | MR | Zbl
[8] G. Baumslag, D. Solitar, “Some two-generator one-relator non-hopfian groups”, Bull. AMS, 68 (1962), 199–201 | DOI | MR | Zbl
[9] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, v. 2, Springer-Verlag, Berlin, 2001 | MR | Zbl
[10] O. Bogopolski, Introduction to group theory, European Mathematical Society, 2008 | MR | Zbl
[11] F. A. Dudkin, “The centralizer dimension of generalized Baumslag-Solitar groups”, Algebra and Logic, 55:5 (2016), 403–406 | DOI | MR | Zbl
[12] F. A. Dudkin, “On the centralizer dimension and lattice of generalized Baumslag-Solitar groups”, Siberian Mathematical Journal, 59:3 (2018), 403–414 | DOI | MR | Zbl
[13] G. Levitt, “Generalized Baumslag–Solitar groups: Rank and finite index subgroups”, Annales Institut Fourier, 65:2 (2015), 725–762 | DOI | MR | Zbl
[14] I. Chiswell, Introduction to $\Lambda$-trees, World Scientific Inc., Singapore, 2001 | MR | Zbl