Computation of the centralizer dimension of generalized Baumslag--Solitar groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1823-1841

Voir la notice de l'article provenant de la source Math-Net.Ru

A finitely generated group $G$ acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag-Solitar group ($GBS$ group). The centralizer dimension of a group $G$ is the maximal length of a descending chain of centralizers. In this paper we complete a description of centralizers for unimodular $GBS$ groups. This allows us to find the centralizer dimension of all $GBS$ groups and to establish a way to compute it.
Keywords: centralizer of set of elements, centralizer dimension, generalized Baumslag–Solitar group, Baumslag–Solitar group.
@article{SEMR_2018_15_a33,
     author = {F. A. Dudkin},
     title = {Computation of the centralizer dimension of generalized {Baumslag--Solitar} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1823--1841},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/}
}
TY  - JOUR
AU  - F. A. Dudkin
TI  - Computation of the centralizer dimension of generalized Baumslag--Solitar groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1823
EP  - 1841
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/
LA  - en
ID  - SEMR_2018_15_a33
ER  - 
%0 Journal Article
%A F. A. Dudkin
%T Computation of the centralizer dimension of generalized Baumslag--Solitar groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1823-1841
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/
%G en
%F SEMR_2018_15_a33
F. A. Dudkin. Computation of the centralizer dimension of generalized Baumslag--Solitar groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1823-1841. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/