Computation of the centralizer dimension of generalized Baumslag--Solitar groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1823-1841.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finitely generated group $G$ acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag-Solitar group ($GBS$ group). The centralizer dimension of a group $G$ is the maximal length of a descending chain of centralizers. In this paper we complete a description of centralizers for unimodular $GBS$ groups. This allows us to find the centralizer dimension of all $GBS$ groups and to establish a way to compute it.
Keywords: centralizer of set of elements, centralizer dimension, generalized Baumslag–Solitar group, Baumslag–Solitar group.
@article{SEMR_2018_15_a33,
     author = {F. A. Dudkin},
     title = {Computation of the centralizer dimension of generalized {Baumslag--Solitar} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1823--1841},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/}
}
TY  - JOUR
AU  - F. A. Dudkin
TI  - Computation of the centralizer dimension of generalized Baumslag--Solitar groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1823
EP  - 1841
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/
LA  - en
ID  - SEMR_2018_15_a33
ER  - 
%0 Journal Article
%A F. A. Dudkin
%T Computation of the centralizer dimension of generalized Baumslag--Solitar groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1823-1841
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/
%G en
%F SEMR_2018_15_a33
F. A. Dudkin. Computation of the centralizer dimension of generalized Baumslag--Solitar groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1823-1841. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a33/

[1] J.P. Serre, Trees, Springer, Berlin–Heidelberg–New York, 1980 | MR | Zbl

[2] V. Guirardel, G. Levitt, JSJ decompositions of groups, Astérisque, 395, 2017 | MR | Zbl

[3] M. Clay, M. Forester, “On the isomorphism problem for generalized Baumslag-Solitar groups”, Algebraic Geometric Topology, 8 (2008), 2289–2322 | DOI | MR | Zbl

[4] D. J. S. Robinson, “Generalized Baumslag-Solitar groups: a survey of recent progress”, Groups St Andrews 2013, LMS, Lecture Note Series, 422, 2016, 457–469 | MR

[5] A. Myasnikov, P. Shumayatsky, “Discriminating groups and c-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl

[6] A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Centralizer dimension and universal classes of group”, Sib. Electron. Math. Rep., 3 (2006), 197–215 | MR | Zbl

[7] M. Forester, “Deformation and rigidity of simplicial group actions on trees”, Geometry Topology, 6 (2002), 219–267 | DOI | MR | Zbl

[8] G. Baumslag, D. Solitar, “Some two-generator one-relator non-hopfian groups”, Bull. AMS, 68 (1962), 199–201 | DOI | MR | Zbl

[9] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, v. 2, Springer-Verlag, Berlin, 2001 | MR | Zbl

[10] O. Bogopolski, Introduction to group theory, European Mathematical Society, 2008 | MR | Zbl

[11] F. A. Dudkin, “The centralizer dimension of generalized Baumslag-Solitar groups”, Algebra and Logic, 55:5 (2016), 403–406 | DOI | MR | Zbl

[12] F. A. Dudkin, “On the centralizer dimension and lattice of generalized Baumslag-Solitar groups”, Siberian Mathematical Journal, 59:3 (2018), 403–414 | DOI | MR | Zbl

[13] G. Levitt, “Generalized Baumslag–Solitar groups: Rank and finite index subgroups”, Annales Institut Fourier, 65:2 (2015), 725–762 | DOI | MR | Zbl

[14] I. Chiswell, Introduction to $\Lambda$-trees, World Scientific Inc., Singapore, 2001 | MR | Zbl