Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a30, author = {V. V. Korableva}, title = {A strong version of the {Sims} conjecture for primitive parabolic permutation representations of finite simple groups {Lie} types $G_2, F_4$ and $E_6$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1595--1604}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/} }
TY - JOUR AU - V. V. Korableva TI - A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1595 EP - 1604 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/ LA - ru ID - SEMR_2018_15_a30 ER -
%0 Journal Article %A V. V. Korableva %T A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1595-1604 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/ %G ru %F SEMR_2018_15_a30
V. V. Korableva. A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1595-1604. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/
[1] N. Bourbaki, Groupes et algèbres de Lie, Ch. IV, V, VI, Hermann, Paris, 1968 | MR
[2] A.S. Kondrat'ev, V.I. Trofimov, “Stabilizers of graph's vertices and a strengthened version of the Sims conjecture”, Dokl. Math., 59:1 (1999), 113–115 | MR
[3] A.S. Kondrat'ev, V.I. Trofimov, “Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. I–IV”, Proc. Steklov Inst. Math., 289, Suppl. 1 (2015), S146–S155 ; Proc. Steklov Inst. Math., 295, Suppl. 1 (2016), S89–S100 ; Proc. Steklov Inst. Math., 299, Suppl. 1 (2017), S113–S122 ; Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 109–132 | MR | MR | MR | DOI
[4] V.V. Korableva, “Parabolic permutation representations of groups $E_6(q)$ and $E_7(q)$”, Sbornik nauchn. trudov “Combinatorial and computational methods in mathematics”, OmGU, Omsk, 1999, 160–189
[5] V.V. Korableva, “On chief factors of parabolic maximal subgroups of finite simple groups of normal Lie type”, Sib. Math. J., 55:4 (2014), 622–638 | DOI | MR
[6] V.V. Korableva, “On the chief factors of parabolic maximal subgroups of special finite simple groups of exceptional Lie type”, Sib. Math. J., 58:6 (2017), 1034–1041 | DOI | MR
[7] R.W. Carter, Simple groups of Lie type, John Wiley and Sons, London, 1972 | MR
[8] R.W. Carter, Finite groups of Lie type, conjugacy classes and complex characters, John Wiley and Sons, London, 1993 | MR
[9] J.N. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR
[10] The GAP Group. GAP – Groups, Algorithms, and Programming, Ver. gap3-jm, 2017