Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a30, author = {V. V. Korableva}, title = {A strong version of the {Sims} conjecture for primitive parabolic permutation representations of finite simple groups {Lie} types $G_2, F_4$ and $E_6$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1595--1604}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/} }
TY - JOUR AU - V. V. Korableva TI - A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1595 EP - 1604 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/ LA - ru ID - SEMR_2018_15_a30 ER -
%0 Journal Article %A V. V. Korableva %T A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1595-1604 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/ %G ru %F SEMR_2018_15_a30
V. V. Korableva. A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1595-1604. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/