A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1595-1604

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite group $G$, subgroups $M_1$ and $M_2$ of $G$ and any $i\in\mathbb{N}$, the subgroups $(M_1, M_2)^i$ and $(M_2, M_1)^i$ of $M_1\cap M_2$ are defined, inductively on $i$, as follows: $$(M_1, M_2)^1 = (M_1\cap M_2)_{M_1},~(M_2, M_1)^1 = (M_1\cap M_2)_{M_2},$$ $$(M_1, M_2)^{i+1} = ((M_2, M_1)^i)_{M_1},~(M_2,M_1)^{i+1} = (M_1,M_2)^i_{M_2}.$$ Here, for $H\leq G$, $H_G$ denotes $\bigcap_{g\in G}gHg^{-1}$. Denote by $\Pi$ the set of all triples $(G,M_1,M_2)$ such that $G$ is a finite group, $M_1$ and $M_2$ are distinct conjugate maximal subgroups of $G$, $(M_1)_G=(M_2)_G=1$, and $1 |(M_1,M_2)^{2}| \leq |(M_2,M_1)^{2}|$. The triples $(G,M_1,M_2)$ and $(G',M'_1,M'_2)$ from $\Pi$ are equivalent if there exists an isomorphism from $G$ to $G'$ mapping $M_1$ to $M'_1$ and $M_2$ to $M'_2$. The present paper is a continuation of the investigations by A.S. Kondrat'ev and V.I. Trofimov on a description of the set $\Pi$. It is obtained the description up to equivalence all triples $(G,M_1,M_2)$ from $\Pi$ in the case when $G$ is a finite simple group of Lie type $G_2$, $F_4$ or $E_6$, and $M_1$ is a parabolic maximal subgroup of $G$.
Keywords: finite simple group of Lie type, primitive parabolic permutation representation, maximal subgroup, mutual cores, strong version of Sims conjecture.
@article{SEMR_2018_15_a30,
     author = {V. V. Korableva},
     title = {A strong version of the {Sims} conjecture for primitive parabolic permutation representations of finite simple groups {Lie} types $G_2, F_4$ and $E_6$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1595--1604},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/}
}
TY  - JOUR
AU  - V. V. Korableva
TI  - A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1595
EP  - 1604
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/
LA  - ru
ID  - SEMR_2018_15_a30
ER  - 
%0 Journal Article
%A V. V. Korableva
%T A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1595-1604
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/
%G ru
%F SEMR_2018_15_a30
V. V. Korableva. A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1595-1604. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/