A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1595-1604.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite group $G$, subgroups $M_1$ and $M_2$ of $G$ and any $i\in\mathbb{N}$, the subgroups $(M_1, M_2)^i$ and $(M_2, M_1)^i$ of $M_1\cap M_2$ are defined, inductively on $i$, as follows: $$(M_1, M_2)^1 = (M_1\cap M_2)_{M_1},~(M_2, M_1)^1 = (M_1\cap M_2)_{M_2},$$ $$(M_1, M_2)^{i+1} = ((M_2, M_1)^i)_{M_1},~(M_2,M_1)^{i+1} = (M_1,M_2)^i_{M_2}.$$ Here, for $H\leq G$, $H_G$ denotes $\bigcap_{g\in G}gHg^{-1}$. Denote by $\Pi$ the set of all triples $(G,M_1,M_2)$ such that $G$ is a finite group, $M_1$ and $M_2$ are distinct conjugate maximal subgroups of $G$, $(M_1)_G=(M_2)_G=1$, and $1 |(M_1,M_2)^{2}| \leq |(M_2,M_1)^{2}|$. The triples $(G,M_1,M_2)$ and $(G',M'_1,M'_2)$ from $\Pi$ are equivalent if there exists an isomorphism from $G$ to $G'$ mapping $M_1$ to $M'_1$ and $M_2$ to $M'_2$. The present paper is a continuation of the investigations by A.S. Kondrat'ev and V.I. Trofimov on a description of the set $\Pi$. It is obtained the description up to equivalence all triples $(G,M_1,M_2)$ from $\Pi$ in the case when $G$ is a finite simple group of Lie type $G_2$, $F_4$ or $E_6$, and $M_1$ is a parabolic maximal subgroup of $G$.
Keywords: finite simple group of Lie type, primitive parabolic permutation representation, maximal subgroup, mutual cores, strong version of Sims conjecture.
@article{SEMR_2018_15_a30,
     author = {V. V. Korableva},
     title = {A strong version of the {Sims} conjecture for primitive parabolic permutation representations of finite simple groups {Lie} types $G_2, F_4$ and $E_6$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1595--1604},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/}
}
TY  - JOUR
AU  - V. V. Korableva
TI  - A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1595
EP  - 1604
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/
LA  - ru
ID  - SEMR_2018_15_a30
ER  - 
%0 Journal Article
%A V. V. Korableva
%T A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1595-1604
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/
%G ru
%F SEMR_2018_15_a30
V. V. Korableva. A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1595-1604. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a30/

[1] N. Bourbaki, Groupes et algèbres de Lie, Ch. IV, V, VI, Hermann, Paris, 1968 | MR

[2] A.S. Kondrat'ev, V.I. Trofimov, “Stabilizers of graph's vertices and a strengthened version of the Sims conjecture”, Dokl. Math., 59:1 (1999), 113–115 | MR

[3] A.S. Kondrat'ev, V.I. Trofimov, “Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. I–IV”, Proc. Steklov Inst. Math., 289, Suppl. 1 (2015), S146–S155 ; Proc. Steklov Inst. Math., 295, Suppl. 1 (2016), S89–S100 ; Proc. Steklov Inst. Math., 299, Suppl. 1 (2017), S113–S122 ; Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 109–132 | MR | MR | MR | DOI

[4] V.V. Korableva, “Parabolic permutation representations of groups $E_6(q)$ and $E_7(q)$”, Sbornik nauchn. trudov “Combinatorial and computational methods in mathematics”, OmGU, Omsk, 1999, 160–189

[5] V.V. Korableva, “On chief factors of parabolic maximal subgroups of finite simple groups of normal Lie type”, Sib. Math. J., 55:4 (2014), 622–638 | DOI | MR

[6] V.V. Korableva, “On the chief factors of parabolic maximal subgroups of special finite simple groups of exceptional Lie type”, Sib. Math. J., 58:6 (2017), 1034–1041 | DOI | MR

[7] R.W. Carter, Simple groups of Lie type, John Wiley and Sons, London, 1972 | MR

[8] R.W. Carter, Finite groups of Lie type, conjugacy classes and complex characters, John Wiley and Sons, London, 1993 | MR

[9] J.N. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR

[10] The GAP Group. GAP – Groups, Algorithms, and Programming, Ver. gap3-jm, 2017