Rank of commutator subgroup of finite $p$-group generated by elements of order $p>2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1332-1343.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups in the abstract are finite. We define rank $d(G)$ of a $p$-group $G$ as the minimal number of generators of $G$, $d(G) = 0$ if $|G|=1$. Let $p$ be an odd prime number, $n,k$ be integers, $n \geq 1$, $k \geq 1$. By $M(n,k,p)$ we denote the number of sequences $i_1,\dots,i_k$ in which $1 \leq i_1 \leq \dots \leq i_k \leq n$, all members $i_j$ are integers and in which any integer from $[1,n]$ may be present at most $(p-1)$ times. In addition we define $M(n,k,p)=0$ if $n \leq 0$ or $k 0$ and $M(n,0,p)=1$ if $n \geq 1$. By $C(n,k,p)$ we denote $\sum\limits_{1 \leq i_2 \leq n-1} ( M(n-i_2+1,k-2,p) -2 M(n-i_2, k-p-1, p) +M(n-i_2-1, k-2p-1,p) ) (n-i_2)$. By $D(n,p)$ we denote the following sum: $\sum\limits_{k=2}^{n(p-1)} C(n,k,p)$; $D(1,p)=0$. We prove that for any $p$-group $G$ generated by $n$ elements of order $p > 2$, $d(G') \leq D(n,p)$ and that the upper bound is attainable. As an intermediate result we prove that the class of nilpotency of such group $G$ with elementary abelian commutator subgroup does not exceed $n(p-1)$ and this upper bound is also attainable.
Keywords: finite $p$-group generated by elements of order $p$, minimal number of generators of commutator subgroup, definition of group by means of generators and defining relations.
@article{SEMR_2018_15_a27,
     author = {B. M. Veretennikov},
     title = {Rank of commutator subgroup of finite $p$-group generated by elements of order $p>2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1332--1343},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a27/}
}
TY  - JOUR
AU  - B. M. Veretennikov
TI  - Rank of commutator subgroup of finite $p$-group generated by elements of order $p>2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1332
EP  - 1343
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a27/
LA  - ru
ID  - SEMR_2018_15_a27
ER  - 
%0 Journal Article
%A B. M. Veretennikov
%T Rank of commutator subgroup of finite $p$-group generated by elements of order $p>2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1332-1343
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a27/
%G ru
%F SEMR_2018_15_a27
B. M. Veretennikov. Rank of commutator subgroup of finite $p$-group generated by elements of order $p>2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1332-1343. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a27/

[1] A.D. Ustyuzhaninov, “Finite 2-groups generated by exactly three involutions”, All-union algebr. symposium, abstracts (1975), v. I, Gomel, 1975, 72 (in Russian)

[2] B.M. Veretennikov, “On the commutator subgroups of finite 2-groups generated by involutions”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 77–84 (in Russian) | DOI | MR

[3] M.I. Kargapolov, J.I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[4] N. Blackburn, “On prime-power groups with two generators”, Mathematical Proceedings of the Cambridge Philosophical Society, 54:3 (1958), 327–337 | DOI | MR | Zbl