Dynamic contact algebras and quantifier-free logics for space and time
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1103-1144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is in the field of Region Based Theory of Space (RBTS), sometimes called mereotopology. RBTS is a kind of point-free theory of space based on the notion of region. Its origin goes back to some ideas of Whitehead, De Laguna and Tarski to build the theory of space without the use of the notion of point. Contact algebras present an algebraic formulation of RBTS and in fact give axiomatizations of the Boolean algebras of regular closed sets of some classes of topological spaces with an additional relation of contact. Dynamic contact algebras (DCA), are generalizations of contact algebras studying regions changing in time and present formal explications of Whitehead's ideas of integrated point-free theory of space and time. In the present paper we propose several new types of dynamic contact algebras and quantifier-free logics based on them. The logics are finitary, based on Modus Ponens and some nonstandard inference rules which replace the non-universal axioms of the corresponding DCA. In fact these logics can be considered as axiomatizations of the universal fragment of the first-order theory of the corresponding DCA. They can be treated as kinds of non-standard temporal logics for spatial regions changing in time. The difference with standard temporal logic is that we do not use temporal operators but temporal predicates. We present also snapshot semantics and Kripke style relational semantics for some of these logics, based on relational models for the corresponding DCA. The relational semantics helps to use some techniques adapted from modal logic to study some metalogical properties of the studied systems.
Keywords: region-based theory of space and time, contact algebra, dynamic contact algebra, representation theorem, quantifier-free first-order theory, rule-elimination theorem, non-standard temporal logic.
@article{SEMR_2018_15_a26,
     author = {P. Dimitrov and D. Vakarelov},
     title = {Dynamic contact algebras and quantifier-free logics for space and time},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1103--1144},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a26/}
}
TY  - JOUR
AU  - P. Dimitrov
AU  - D. Vakarelov
TI  - Dynamic contact algebras and quantifier-free logics for space and time
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1103
EP  - 1144
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a26/
LA  - en
ID  - SEMR_2018_15_a26
ER  - 
%0 Journal Article
%A P. Dimitrov
%A D. Vakarelov
%T Dynamic contact algebras and quantifier-free logics for space and time
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1103-1144
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a26/
%G en
%F SEMR_2018_15_a26
P. Dimitrov; D. Vakarelov. Dynamic contact algebras and quantifier-free logics for space and time. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1103-1144. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a26/

[1] B. Bennett, I. Duntsch, “Axioms, Algebras and Topology”, Handbook of Spatial Logics, eds. M. Aiello, I. Pratt, J. van Benthem, Springer, Dortrecht, 2007, 99–159 | DOI | MR

[2] D. Vakarelov, “Region-Based Theory of Space: Algebras of Regions, Representation Theory and Logics”, Mathematical Problems from Applied Logic II, International Mathematical Series, 5, eds. D. Gabbay, S. Goncharov, M. Zakharyaschev, Springer, 2007, 267–348 | DOI | MR | Zbl

[3] T. Hahmann, M. Gröuninger, “Region-based Theories of Space: Mereotopology and Beyond”, Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, ed. Hazarika S., IGI Publishing, 2012, 1–62

[4] G. Dimov, D. Vakarelov, “Contact Algebras and Region-based Theory of Space. A proximity approach. I; II”, Fundamenta Informaticae, 74:2–3 (2006), 209–249 ; 251–282 | MR | Zbl | MR | Zbl

[5] D. Vakarelov, “Dynamic mereotopology III. Whiteheadean type of integrated point-free theories of space and tyme. I–III”, Algebra and Logic, 53:3 (2014), 191–205 ; Algebra and Logic, 55:1 (2016), 9–23 ; Algebra and Logic, 55:3 (2016), 181–197 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[6] Ph. Balbiani, T. Tinchev, D. Vakarelov, “Modal Logics for Region-based Theory of Space”, Topics in Logic, Philosophy and Foundation of Mathematics and Computer Science in Recognition of Professor Andrzej Grzegorczyk, Fundamenta Informaticae, 81, no. 1–3, 2007, 29–82 | MR | Zbl

[7] R. Sikorski, Boolean Algebras, Springer-Verlag, Berlin, 1964 | MR | Zbl

[8] R. Engelking, General topology, PWN, 1977 | MR | Zbl

[9] P. Simons, PARTS. A Study in Ontology, Clarendon Press, Oxford, 1987

[10] I. Düntsch, D. Vakarelov, “Region-based theory of discrette spaces: A proximity approach”, Proceedings of Fourth International Conference Journées de l'informatique Messine (Metz, France, 2003), eds. Nadif M., Napoli A., SanJuan E., Sigayret A., 123–129; Annals of Mathematics and Artificial Intelligence, 49:1–4 (2007), 5–14 | DOI | MR