On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 797-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p \geq 7$ be a prime, $q = p^n$, where $n \in {\mathbb N}$, and $k$ be the algebraic closure of the field $\mathbb{F}_q$. Let $G \cong E_8(k)$ be a simple linear algebraic group of type $E_8$ over the field $k$, and $\sigma : G \rightarrow G$ be a Steinberg endomorphism of $G$ such that $G_{\sigma} \cong E_8(q)$. Let $M \cong (\mathrm{Alt}_5 \times \mathrm{Sym}_6).2$ be a Borovik subgroup of the group $G$ and $M G_{\sigma}$. An open question is whether the normal $\mathrm{Alt}_5$-subgroup of $M$ and a diagonal $\mathrm{Alt}_5$-subgroup of $\mathrm{soc}(M)$ are conjugated in $G_\sigma$ or not. In 1998, D. Frey investigated conjugated classes of $\mathrm{Alt}_5$-subgroups in $E_8(\mathbb{C})$. But, description of the classes with zero-dimensional centralizers was not obtained. In particular, it was not clear are $\mathrm{Alt}_5$-subgroups of a Borovik subgroup of $E_8(\mathbb{C})$ with zero-dimensional centralizers conjugated in $E_8(\mathbb{C})$ or not. This problem was solved by G. Lusztig in 2003. Actually, the Lusztig result is more general and concerns regular homorphisms from $\mathrm{Alt}_5$ to connected reductive algebraic group over an algebraically closed field $k'$ of characteristic $p$ where $p=0$ or $p \geq 7$. The Lusztig result implies, in particular, that $\mathrm{Alt}_5$-subgroups of a Borovik subgroup of $E_8(k')$ with zero-dimensional centralizers are conjugated in $E_8(k')$. We use the Lusztig result to prove that the normal $\mathrm{Alt}_5$-subgroup of the group $M$ is conjugated with a diagonal $\mathrm{Alt}_5$-subgroup of $\mathrm{soc}\,(M)$ in $G_{\sigma^m}$ where $m \leq 6$.
Mots-clés : $E_8(q)$
Keywords: Borovik subgroup, subgroup $\mathrm{Alt}_5$, conjugated class.
@article{SEMR_2018_15_a22,
     author = {A. V. Konygin},
     title = {On conjugacy of $\mathrm{Alt}_5$-subgroups of {Borovik} subgroup of group $E_8(q)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {797--800},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a22/}
}
TY  - JOUR
AU  - A. V. Konygin
TI  - On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 797
EP  - 800
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a22/
LA  - ru
ID  - SEMR_2018_15_a22
ER  - 
%0 Journal Article
%A A. V. Konygin
%T On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 797-800
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a22/
%G ru
%F SEMR_2018_15_a22
A. V. Konygin. On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 797-800. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a22/

[1] J. H. Conway et. al., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[2] A. V. Borovik, “A maximal subgroup in the simple finite group $E_8(q)$”, Contemporary Mathematics, 131, no. 1, 1992, 67–79 | DOI | MR | Zbl

[3] D. D. Frey, Conjugacy of $\mathrm{Alt}_5$ and $SL(2, 5)$ Subgroups of $E_8(\mathbb C)$, Mem. Amer. Math. Soc., 133, no. 634, 1998 | MR

[4] D. D. Frey, R. L. Griess, “Conjugacy classes of elements in the Borovik group”, J. Algebra, 203:1 (1998), 226–243 | DOI | MR | Zbl

[5] G. Lusztig, “Homomorphisms of the alternating group $A_5$ into reductive groups”, J. Algebra, 260 (2003), 298–322 | DOI | MR | Zbl