Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a22, author = {A. V. Konygin}, title = {On conjugacy of $\mathrm{Alt}_5$-subgroups of {Borovik} subgroup of group $E_8(q)$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {797--800}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a22/} }
TY - JOUR AU - A. V. Konygin TI - On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 797 EP - 800 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a22/ LA - ru ID - SEMR_2018_15_a22 ER -
A. V. Konygin. On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 797-800. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a22/
[1] J. H. Conway et. al., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[2] A. V. Borovik, “A maximal subgroup in the simple finite group $E_8(q)$”, Contemporary Mathematics, 131, no. 1, 1992, 67–79 | DOI | MR | Zbl
[3] D. D. Frey, Conjugacy of $\mathrm{Alt}_5$ and $SL(2, 5)$ Subgroups of $E_8(\mathbb C)$, Mem. Amer. Math. Soc., 133, no. 634, 1998 | MR
[4] D. D. Frey, R. L. Griess, “Conjugacy classes of elements in the Borovik group”, J. Algebra, 203:1 (1998), 226–243 | DOI | MR | Zbl
[5] G. Lusztig, “Homomorphisms of the alternating group $A_5$ into reductive groups”, J. Algebra, 260 (2003), 298–322 | DOI | MR | Zbl