On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 728-732

Voir la notice de l'article provenant de la source Math-Net.Ru

In theorem 1 for $Soc(G) = \Omega_{2n}^+(2)$, $n \ge 3$ and $S \in Syl_2(G)$ subgroup $min_G(S,S) = \langle S \bigcap S^g | |S \bigcap S^g| is\ minimal \rangle$ is constructed. In theorem 2 it is proved that if $Soc(G) = \Omega_{2n}^+(2^m)$ and for primary subgroups $A$ and $B$ we have $min_G(A,B) \ne 1$, then $m=1$, we can assume that $A$ and $B$ are subgroups of $S \in Syl_2(G)$, $|G:Soc(G)|=2$, involution from $G-Soc(G)$ induces the graph automorphism on $Soc(G)$ and $min_G(S,S)\subseteq A\cap B$.
Keywords: finite group, nilpotent subgroup, intersection of subgroups.
@article{SEMR_2018_15_a20,
     author = {V. I. Zenkov},
     title = {On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {728--732},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a20/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 728
EP  - 732
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a20/
LA  - ru
ID  - SEMR_2018_15_a20
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 728-732
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a20/
%G ru
%F SEMR_2018_15_a20
V. I. Zenkov. On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 728-732. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a20/