On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 728-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

In theorem 1 for $Soc(G) = \Omega_{2n}^+(2)$, $n \ge 3$ and $S \in Syl_2(G)$ subgroup $min_G(S,S) = \langle S \bigcap S^g | |S \bigcap S^g| is\ minimal \rangle$ is constructed. In theorem 2 it is proved that if $Soc(G) = \Omega_{2n}^+(2^m)$ and for primary subgroups $A$ and $B$ we have $min_G(A,B) \ne 1$, then $m=1$, we can assume that $A$ and $B$ are subgroups of $S \in Syl_2(G)$, $|G:Soc(G)|=2$, involution from $G-Soc(G)$ induces the graph automorphism on $Soc(G)$ and $min_G(S,S)\subseteq A\cap B$.
Keywords: finite group, nilpotent subgroup, intersection of subgroups.
@article{SEMR_2018_15_a20,
     author = {V. I. Zenkov},
     title = {On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {728--732},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a20/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 728
EP  - 732
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a20/
LA  - ru
ID  - SEMR_2018_15_a20
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 728-732
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a20/
%G ru
%F SEMR_2018_15_a20
V. I. Zenkov. On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 728-732. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a20/

[1] V.D. Mazurov, V.I. Zenkov, “On Intersections of Sylow Subgroups in Finite Groups”, Algebra i logika, 35:4 (1996), 424–432 | MR

[2] V.I. Zenkov, “Intersections of Abelian Subroups in Finite Groups”, Mat. zametki, 56:2 (1994), 150–152 | MR

[3] V.I. Zenkov, “Intersection of Nilpotent Subgroups in Finite Groups”, Fund. and Appl. Math., 2:1 (1996), 1–92 | MR

[4] V.I. Zenkov, Y.N. Nuzhin, “On Intersections of Pimary Subgroups of Odd Order in Finite Almost Simple Groups”, Fund. and Appl. Math., 9:6 (2014), 115–123 | MR

[5] V.I. Zenkov, “On Intersections of Primary Supgroups in Group $Aut(L_n(2))$, I”, Tr. of Mathematics and Mechanics Institute UrD RAS, 21, no. 1, 2015, 105–111 | MR

[6] V.I. Zenkov, “On Intersections of Two Nilpotent Subgroups in Finite Groups with Socle $L_2(q)$”, Sib. Math. Journal, 57:6 (2016), 1280–1290 | MR

[7] J.H. Convay et. al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR

[8] D. Gorenstein, Finite Simple Groups. Introduction to its Classification, M., 1996 | MR

[9] A.R. Jamali, M. Viseh, “On Nilpotent Subgroups Containing Nontrivial Normal Subgroups”, J. of Group Theory, 13:4 (2010), 411–416 | MR

[10] V.I. Zenkov, “On Intersections of Nilpotent Subgroups in Finite Symmetric and Alternative Groups”, Tr. of Mathematics and Mechanics Institute UrD RAS, 19, no. 3, 2013, 145–149 | MR

[11] M. Aschbaher, G.M. Seitz, “Involutions in Chevalley Groups over Fields of Even Order”, Nagoya Mathematical Journal, 63 (1976), 1–91 | MR